

Investigation of the technical feasibility for 50G/200G/400G beyond 10km optical PHY

Yoshiaki Sone NTT

IEEE802.3 Plenary meeting, Orland, Nov .2017

Overview

Feasibility investigation for 50G/200GbE/400GbE beyond 10km optical PMD.

- •56Gb/s PAM4 transmission experiment with APD receiver
 - -> receiver sensitivity and dispersion penalty is evaluated assuming 8-lane LAN-WDM
- Example of high power EML

56Gbps PAM4 transmission with APD

- 1ch. 56Gbps PAM4 optical transmission experiments using different EMLs and an APD receiver.
- Worst-case dispersion for 8 lambda LAN-WDM transmission over 40km SMF.

		Fiber			KP4 (limit=2E-4)		Stronger FEC(limit=1E-3 *2)	
Tx		dispersion [ps/nm]	· I	Rx	Rx sensitivity*1 [dBm]	CD Penalty [dB]	Rx sensitivity*1 [dBm]	CD Penalty [dB]
EML#1 ER=5.6[dB] 1304.3nm(L6)	x	-203		APD receiver	~ -18.0	~1.5	~ -19.1	~0.5
		0	х					
EML#2 ER=5.8[dB] 1308.9nm(L7)		+38						

^{* 1} OMA outer, Without WDM-demux, value at zero ps/nm

^{* 2} BER limit assuming possible FEC(s) stronger than KP4

Evaluation results

KP4 FEC (limit = 2E-4)

Min. Rx sensitivity (EML#1): -18.0 dBm
Min. Rx sensitivity (EML#2): -17.4 dBm

CD penalty : $\sim 1.5 \text{ dB}$

— EML#1+APD
— EML#1+PIN-PD
— EML#2+APD
— EML#2+pin-PD
— -203.3ps/nm
— +37.5ps/nm

Target dispersion -203.3 to +38.5ps/nm

Stronger FEC (limit = 1E-3)

-19.1 dBm -18.7 dBm

 $\sim 0.5 dB$

Rx sensitivity, OMAouter

Beyond 10km : Stronger FEC

NTT Confidential

Several Potential hard decision FEC with 8-9dB NCG can help to achieve beyond 10km 400GbE

RS-FEC, BCH-FEC, MLC-FEC or Staircase FEC. (wang ecdc 01 0316)

NCG for HG FEC options, Assuming post BER@1E-13 objective.

Link budget example with High-power EML

ER=7.31dB OMAouter=7.8dBm

PAM4 tx eye with high power EML

Conclusion

- 56G PAM4 transmission with APD receiver
- Receivers sensitivity is about 18dB even assuming KP4-FEC limit.
 (about 10dB better than 400G FR8 specification.)
- Dispersion penalty is less than 1.5dB for 8-lambda LAN-WDM.
- There is still a room for stronger FEC overhead in terms of bitrate that supported in current components.
 Stronger FEC improves Rx sensitivity and reduces dispersion penalty.
- Example performance with high power EML. (OMA outer 7.8dBm)

Backup slides

Measured BER at worst case dispersion

APD receiver sensitivity for 56Gb/s transmission

-16.8 dBm: worst case dispersion(negative)*

-18.0 dBm: back to back

-17.5 dBm: the worst case dispersion(Positive)*

* assumed 8-lane LAN-WDM over SMF

* assumed KP4 FEC limit as a reference

Without 8λWDM demux loss

400GbE 40km application

NTT Confidential

Extended reach interface is essential for inter-building connections in service providers networks.

10km reach:

Covers 50% of inter-building links

40km reach(For example):

Covers almost 100% of inter-building links

- low-cost solution for some metro areas
- low-latency

Worst-case dispersion for 40km SMF transmission

Worst-case dispersion for SMF transmission

■ Negative dispersion

 $0.93 \cdot \lambda \cdot [1-(1324/\lambda)^4] = -203.3 \text{ ps/nm}$

■ Positive dispersion

 $0.93 \cdot \lambda \cdot [1-(1300/\lambda)^4] = +37.5 \text{ ps/nm}$

Table 123-5—Wavelength-division-multiplexed lane assignments

Lane	Center frequency	Center wavelength	Wavelength range		
L ₀	235.4 THz	1273.54 nm	1272.55 to 1274.54 nm		
L ₁	234.6 THz	1277.89 nm	1276.89 to 1278.89 nm		
12	233 8 THz	1282.26 nm	1281.25 to 1283.27 nm		
L ₃	233 THz	1286.66 nm	1285.65 to 1287.68 nm		
L ₄	231.4 THz	1295.56 nm	1294.53 to 1296.59 nm		
L ₅	230.6 THz	1300.05 nm	1299.02 to 1301.09 nm		
L ₆	229.8 THz	1304.58 nm	1303.54 to 1305.63 nm		
L ₇	229 THz	1309.14 nm	1308.09 to 1310.19 nm		

4 x LR8-value

Table 123–12—Transmitter compliance channel specifications

DAID time		Dispersion	Insertion	Optical	Max	
PMD type		Minimum	Maximum	lossb	return loss ^c	mean DGD
400GBASE-FR8	0.	$0465 \cdot \lambda \cdot [1 - (1324 / \lambda)^4]$	$0.0465 \cdot \lambda \cdot [1 - (1300 / \lambda)^4]$	Minimum	19.8 dB	0.8 ps
400GBASE-LR8	0.	$2325 \cdot [1 - (1324 / \lambda)^4]$	$0.2325 \cdot \lambda \cdot [1 - (1300 / \lambda)^4]$	Minimum	17.6 dB	0.8 ps

