The Beyond 10km Optical PHYs Project: An Overview

John D'Ambrosia Futurewei, Subsidiary of Huawei Chair, IEEE 802.3 Beyond 10km Optical PHYs Study Group

IEEE 802.3 Sept 2018 Interim Spokane, WA, USA

Foreword

- Presentation is being given with my "Chair" hat on.
 - None of this discussion should be interpreted as an endorsement of any objective or potential proposal by me.
 - This presentation is my interpretation, as chair, of conversations in the Study Group and associated ad hoc calls.
- This presentation discusses the technical feasibility of the different PHYS
 - Provides an initial mapping of the baselines needed to work towards a technically complete draft

Adopted Objectives

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current Ethernet standard
- Provide appropriate support for OTN

50 Gb/s Ethernet

- Support a MAC data rate of 50 Gb/s
- Support a BER of better than or equal to 10^-12 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 50 Gb/s
- Provide a physical layer specification which supports 50 Gb/s operation over at least 40 km of SMF

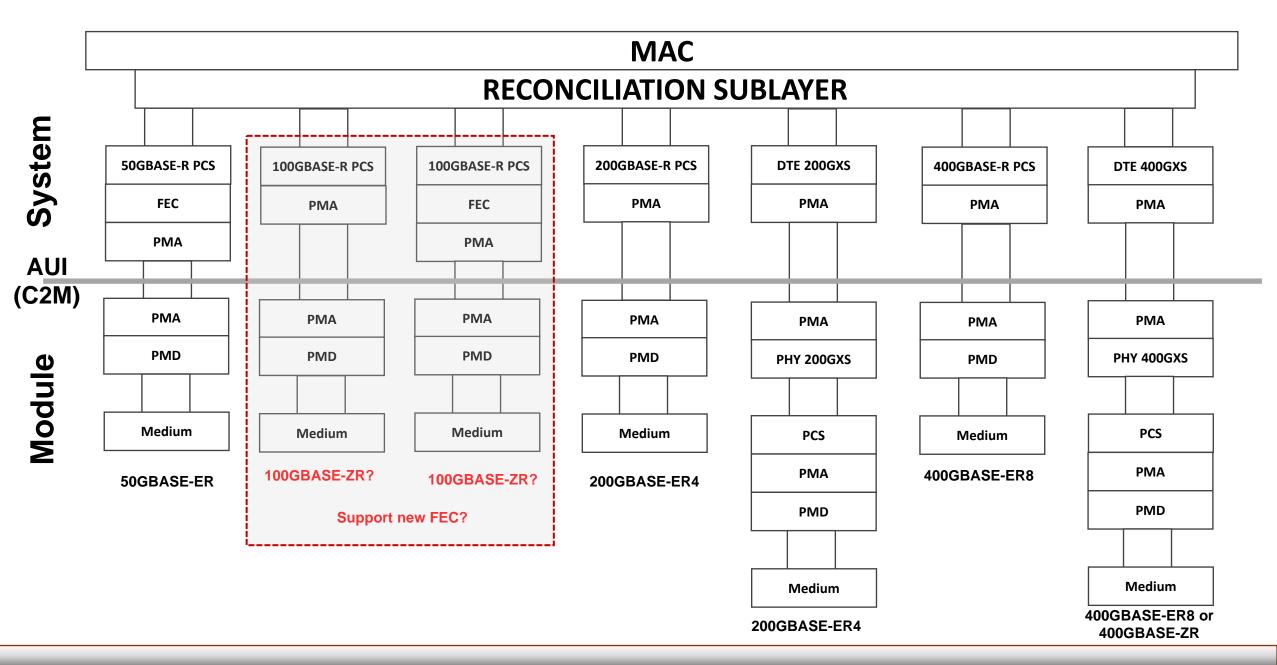
100 Gb/s Ethernet

- Support a MAC data rate of 100 Gb/s
- Support a BER of better than or equal to 10^-12 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 100 Gb/s
- Provide a physical layer specification supporting 100 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system.

200 Gb/s Ethernet

- Support a MAC data rate of 200 Gb/s
- Support a BER of better than or equal to 10^-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 200 Gb/s
- Provide a physical layer specification supporting 200 Gb/s operation over four wavelengths capable of at least 40 km of SMF

400 Gb/s Ethernet


- Support a MAC data rate of 400 Gb/s
- Support a BER of better than or equal to 10^-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 400 Gb/s
- Provide a physical layer specification supporting 400 Gb/s operation over eight wavelengths capable of at least 40 km of SMF
- Provide a physical layer specification supporting 400 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system.

Summary of Objectives / Architecture

	Data Rate	Reach	PCS / FEC	Extender Sublayer
Assumed PAM4	50 Gb/s	40 km	Reuse Existing?	None exist
	200 Gb/s			Exists
As	400 Gb/s			Exists
Assumed Coherent	100 Gb/s	80 km	New	None exist
	400 Gb/s	OU KIII		Exists

My Assumptions

- Co-existence with existing ports
 - Goal for 40km reuse of existing FEC
 - New defined 80 km PHYs for use in modules
- No electrical interface development
 - Leverage prior interfaces
- Nomenclature
 - "-ERn" for 40km PHYs
 - "-ZR" for 80km PHYs

IEEE P802.Beyond 10km Optical PHYs Study Group, IEEE 802.3, Sept 2018 Interim, Spokane, WA, USA

Architecture Comments

	Data Rate	Reach	PCS / FEC *	Observations
	50 Gb/s	40 km	Existing	Leverage existing PHY structure with new PMD to coexist with current 50G ports
PAM4*	200 Gb/s			Leverage existing PHY structure with new PMD or extender sublayer with new PHY (based on new PMD) to coexist with current 200G ports
	400 Gb/s			Leverage existing PHY structure with new PMD or extender sublayer with new PHY (based on new PMD) to coexist with current 400G ports
ENT*	100 Gb/s		New	New PHY (PCS / FEC and PMD) anticipated. Architectural proposal needed for how to co-exist with current 100G ports.
COHERENT*	400 Gb/s	80 km		New PHY (PCS / FEC and PMD) anticipated. New PHY could be put in module, leveraging existing extender sublayer to coexist with current 400G ports.

Project Work

Logic Functions	Electrical Interfaces	Optical PMDs				
 Extender Sublayer (100GXS)? PCS functions PMA functions OTN Compatibility 	None ?	 50GBASE-ER 100GBASE-ZR 200GBASE-ER4 400GBASE-ER8 400GBASE-ZR MDI(s?) Media <u>Test Methods</u> 				
FEC ARCHITECTURE						
		FEC related to PMD functions?				
 Management related to Logic functions (Clauses 30, 45, etc.) 		 Management related to PMD functions (Clauses 30, 45, etc.) 				