400G FEC and Framing for 80km

Ilya Lyubomirsky, Benjamin Smith, Jamal Riani, Sudeep Bhoja, Inphi Corp. Gary Nicholl, Mark Nowell, Fernando Villarruel, Cisco Systems, Inc.

Sept. 10, 2018

Supporters

- Jean-Michel Caia, Fiberhome
- Rich Baca, Microsoft
- Paul Brooks, Viavi Solutions
- James Chien, ZTE
- Tad Hofmeister, Google
- Steve Trowbridge, Nokia

Goals for 400G FEC and Framing

> Enable low power FEC for pluggable modules with sufficient coding gain for 80km reach
$>$ Leverage FEC+Framing developments in OIF 400ZR
> Leverage industry coherent ASIC technology developments to minimize costs

IEEE Layer View

OIF 400ZR FEC+Framing

- Reuse significant amount of 802.3bs PCS (Clause 119)
- Leverage FEC and DSP framing from OIF 400ZR project

GMP Mapping to 400ZR Frame

- 400GE signal is mapped to a 400 ZR frame as a 256/257 block stream
- GMP mapping ($4 \times 257 \mathrm{~b}$) is used to rate-adapt payload to local reference with +/- 20ppm clock accuracy

400ZR Frame Structure

Encode 256b/257b transcode	No rate No rate matching matching	 Reverse transcode
	System-side CLOCK DOMAIN (+/- 100 ppm) Line-Side CLOCK DOMAIN (+/- 20 ppm)	/257b blocks ${ }^{-}$
GMP Mapping (4*257b stuffing)		GMP de-mapping (4*257b de-stuffing)
\downarrow		\uparrow
$\mathrm{OH} / \mathrm{AM}$ insertion (20*257b)		AM/OH detect \& removal (20*257b)

> Concatenated FEC
> Soft decision inner - Hamming $(128,119)$ Code
$>$ Hard decision outer - Staircase Code $(255,239)$
> NCG = 10.8dB (16QAM)
> FEC overhead = 14.8 \%
> Ultra Low Power $=420 \mathrm{~mW}$ (7nm, 400G)
> Burst Tolerance $=1024$ bits
\Rightarrow Latency $=4 \mu \mathrm{~s}$ (400G)

16-QAM Symbol Mapping

- Bits are Grey mapped to 16-QAM symbols
- 16-QAM Symbols are interleaved and distributed to X and Y polarizations

Pilot Symbols

Pilot symbols are added periodically to aid Rx DSP carrier phase recovery and enable absolute phase detection for better performance

- Pilot symbol inserted with a period of 32 QAM symbols
- Different pilot sequences used for X and Y polarizations

DSP Frame Overview

- A DSP frame consists of 3712 symbols; 49 DSP frames are combined into a Super Frame structure in each X/Y polarizations
- Each DSP frame includes an 11 symbol training sequence, and pilot symbols inserted every 32 symbols
- First DSP frame includes a 22 symbol Super Frame Alignment Word (FAW), different for X/Y polarizations, and 76 reserved symbols

Conclusions

> Provided overview of OIF 400ZR FEC and Framing
> Recommend leveraging the work of OIF 400ZR for B10K 400G/80km

