Architectural considerations in support of 100G and 400G 80km DWDM PHYs

Gary Nicholl - Cisco

IEEE 802.3 B10K Study Group, September 2018, Spokane

Introduction

 This presentation addresses some architectural considerations in support of the 100G and 400G 80km DWDM PHY objectives

Adopted b10k DWDM PHY Objectives

Adopted Objectives

- Support full-duplex operation only*
- Preserve the Ethernet frame format utilizing the Ethernet MAC*
- Preserve minimum and maximum FrameSize of current Ethernet standard*
- Provide appropriate support for OTN*

50 Gb/s Ethernet

- Support a MAC data rate of 50 Gb/s*
- Support a BER of better than or equal to 10^-12 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 50 Gb/s*
- Provide a physical layer specification which supports 50 Gb/s operation over at least 40 km of SMF*

100 Gb/s Ethernet

- Support a MAC data rate of 100 Gb/s **
- Support a BER of better than or equal to 10^-12 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 100 Gb/s **
- Provide a physical layer specification supporting 100 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system. **

200 Gb/s Ethernet

- Support a MAC data rate of 200 Gb/s **
- Support a BER of better than or equal to 10^-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 200 Gb/s **
- Provide a physical layer specification supporting 200 Gb/s operation over four wavelengths capable of at least 40 km of SMF**

400 Gb/s Ethernet

- Support a MAC data rate of 400 Gb/s ***
- Support a BER of better than or equal to 10^-13 at the MAC/PLS service interface (or the frame loss ratio equivalent) for 400 Gb/s ***
- Provide a physical layer specification supporting 400 Gb/s operation over eight wavelengths capable of at least 40 km of SMF***
- Provide a physical layer specification supporting 400 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system.***

IEEE 802.3 Beyond 10km Optical PHYs Study Group

12 July 2018

* - Adopted by SG Jan 2018 Interim. Not approved by IEEE 802.3 WG.

Approved by IEEE 802.3 WG - July 2018 Plenary

** - Adopted by SG Mar 2018 Plenary. Not approved by IEEE 802.3 WG. *** - Adopted by SG May 2018 Interim. Not approved by IEEE 802.3WG.

User Case Recap

nicholl b10k 01a 0518

A key requirement is that the solutions are compatible with existing 100G and 400G Ethernet switch/router ports:

- Interface with existing 100G and 400G C2M AUIs (no new electrical interface development).
- Coexist with current 100G and 400G Ethernet architecture stacks

400G Architecture

- The existing 400GMII Extender (Clause 118) allows the new 400GBASE-ZR PHY to easily interface with current 400G switch ports (and their associated C2M AUI electrical interfaces)
- The 400GBASE-ZR PHY can be defined as any other PHY, in that it contains PCS, PMA and PMD sublayers and interfaces directly to the 400GMII.

400GBASE-ZR PHY Considerations

- For 400GBASE-ZR the PCS, PMA and PMD sublayers are all specific to a single media interface, and not intended to be (or easily) separable over a physically instantiated electrical interface
 - see llya_b10k_01_0918 for more details
- In this respect 400GBASE-ZR is a lot closer to a BASE-T PHY than it is to the existing 400BASE-R PHYs
- In a BASE-T PHY the PCS, PMA and PMD sublayers are typically defined within a single clause (e.g. Clause 55 for 10GBASE-T).
 Perhaps we should adopt the same approach for 400GBASE-ZR ?

10GBASE-T PHY (Clause 55)

Table 44–1—Nomenclature and clause correlation

Nomenclature	Clause										
	48 8B/10B PCS & PMA	49 64B/66B PCS	50 WIS	51 Serial PMA	52			53	54	55	68
					850 nm Serial PMD	1310 nm Serial PMD	1550 nm Serial PMD	1310 nm WDM PMD	4-Lane electrical PMD	Twisted- pair PCS & PMA	1310 nm Serial MMF PMD
10GBASE-SR		Ma		М	М						
10GBASE-SW		M	Μ	M	M						
10GBASE-LX4	М							М			
10GBASE-CX4	М								М		
10GBASE-LR		M		M		M					
10GBASE-LW		M	Μ	M		М					
10GBASE-ER		M		M			М				
10GBASE-EW		М	М	M			М				
10GBASE-T										М	
10GBASE-LRM		М		М							М

Figure 44–1—Architectural positioning of 10 Gigabit Ethernet

10GBASE-T: Only a single entry in Clause table

100G Architecture

- The situation at 100G is somewhat more complicated than it is for 400G
- There is no existing 100GMII Extender to leverage
- The PCS and FEC are implemented as separate sub-layers
- There are at least three different C2M AUIs to interface to:
 - CAUI-4 (no FEC)
 - CAUI-4 (KR4 FEC)
 - 100GAUI-2 (KP4 FEC)

100G Architecture

Summary

- Need to interface with common use 100G and 400G C2M AUIs
- For 400G, the solution is fairly straightforward
 - Leverage the existing 400GMII Extender (Clause 118) and define a new 400GBASE-ZR PHY (PCS+PMA+PMD)
 - The main question is whether the new PCS, PMA and PMD sublayers should be defined as separate clauses or within a single clause (like BASE-T)
- For 100G, more work is required