

Marvell. Moving Forward Faster

5G PCS Options and Scrambling for Ethernet Backplane

17 September 2015

William Lo, Marvell

1

IEEE 802.3 CU4HDD Study Group – September 2015 Interim

Agenda

- List a few options to leverage existing IEEE clauses to 5G
- Discussion on scrambling and why it is good

5G PCS Options

Option 1: 10GBASE-R Based	(000 405 D
Simply scale down 10BASE-R (Clause 49) to half speed	10GBASE-R
64/66 bit coding – with scrambling	
- Can lavarage KB BHV training as is	64/66
- Call leverage KK PHT training as is	
- (assuming training is a desired feature)	Scrambler
- 5.1625 GD/S faw line fale	
Option 2: 1000BASE-X Based	1000BASE-X
Simply scale up 1000BASE-X (Clause 36) 5 times	GMII
8bit / 10 bit coding – no scrambling, fixed K/D idle code	K/D
 No PHY training defined 	
6 25 Gb/s raw line rate	★ 8/10
- 0.25 Gb/S faw life fate	
Option 3: 10GBASE-X4 Based	10GBASE-X
Symbol mux 4 lanes of 10GBASE-X4 (Clause 48) into 1 lane an run lane at 2x speed	d xgmii
Bbit / 10 bit coding – no scrambling except idle bytes randomiz with 3 possible idle codes (A, K, R)	
No PHY training defined	8/10
6.25 Gb/s raw line rate	
IEEE 802.3 CU4HDD Study Group – September 2015 Interim	3 MARVELL®

Scrambling Effect on Spectrum

Receiver need to adapt to spectrum seen during normal operation for optimal equalization

- Repetitive idle patterns in 1000BASE-X and 10GBASE-X colors spectrum
- Unscrambled data spectrum differs from unscrambled idles spectrum
- Scrambling in 10GBASE-R and 6G SAS whitens spectrum

Examples of non-scrambled 8/10 coding

- Receiver equalizes differently based on data pattern received
- Observed cases in field (RXAUI 6.25G) where receiver equalizes error free to idle pattern at startup followed by CRC error on first packet

Bottom line message – Scrambling is Good

5G PCS Recommendation

10GBASE-R Based (Option 1) is the better option

Scrambling provider better equalization of channel at receiver

- Flat spectrum
- No difference between data and idle spectrum

Lower raw bit rate (5.1625 vs 6.25 Gb/s)

- Lower power
- Lower requirements on channel

KR training already defined in BASE-R PCS

Most likely do not need KR training at 5 Gb/s – but is an easy option to add

THANK YOU

IEEE 802.3 CU4HDD Study Group – September 2015 Interim

7