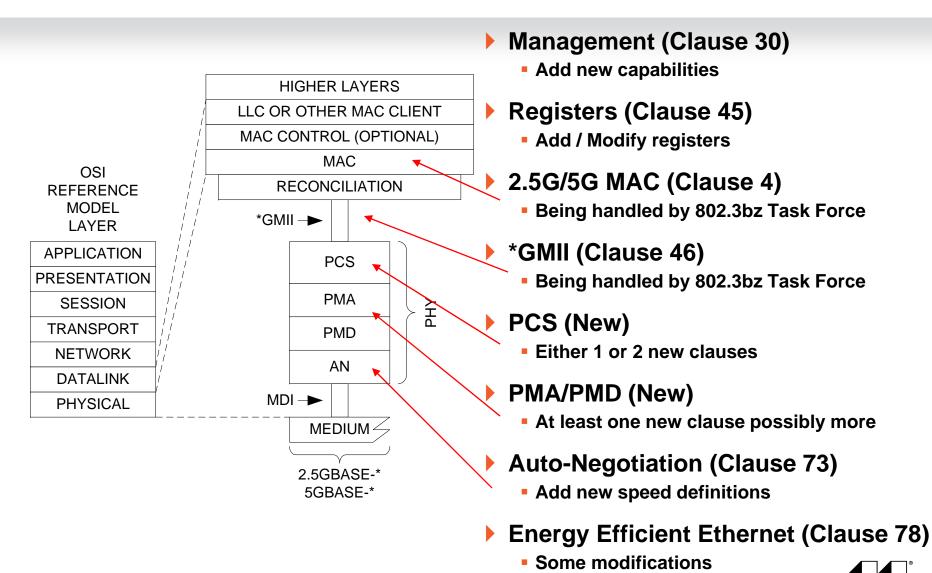
Leverage existing IEEE 802.3 technology for 2.5/5GBASE backplane

September 17, 2015

William Lo, Marvell



Agenda

- Specify 2.5G and 5G Backplane Ethernet reusing as much of existing 802.3 as possible
- Describe work needed on a high level
 - Not diving into details
 - Not making any technical decisions
- Show technical feasibility
 - Modifications based on technologies already deployed in the field

Ethernet Reference Model

Simple Changes

- Clause 1 Introduction
 - Add definition to the new backplanes introduced
- Clause 30 Management
 - Addition of new PHY management attributes for new speeds
- Clause 125 Introduction to 2.5 Gb/s and 5 Gb/s networks
 - Addition to introduce the new backplanes
- Clause 4 Media Access Control
 - New MAC speeds work already being done by 802.3bz
 - 2.5G and 5G backplane will only support full duplex
- Clause 46 Reconciliation Sublayer
 - Optional digital interface work already being done by 802.3bz
- Clause 73 Auto-Negotiation
 - Add definition to the new backplanes capability

Straightforward but More Involved Changes

- Clause 45 Management Data Input/Output Interface
 - Register Section
 - Not hard to specify, but gets messy and tedious working with existing registers
- Clause 69 Introduction to Ethernet Operation Over Electrical Backplane
 - Describe layering for new speeds
 - Specify delay constraints

Physical Coding Sublayer (PCS)

- Leverage 1000BASE-X (Clause 36)
 - Existing implementations running at 2.5G already
 - Need minor alterations to attach to XGMII as chosen by 802.3bz
- Leverage 10GBASE-R (Clause 49)
 - More bandwidth efficient
 - Easy to leverage KR training if needed
- 1000BASE-X a good choice for 2.5G and 10GBASE-R for 5G

Physical Medium Attachment Sublayer (PMA)

- **2.5G PMA**
 - Can use Clause 36 simple to incorporate
- ▶ 5G PMA
 - Can use Clause 51 as starting point
 - Can simplify a lot as an exposed PMA interface does not need to be defined

Physical Medium Dependent Sublayer (PMD)

- 2.5G Backplane Electrical Characteristics
 - Use Clause 71 PMD 10GBASE-KX4 except one lane instead of four
 - Already 3.125 Gb/s raw rate
- ▶ 2.5G Short Reach Copper Electrical Characteristics
 - Use Clause 54 PMD 10GBASE-CX4 except one lane instead of four
 - Already 3.125 Gb/s raw rate
- 5G Backplane Electrical Characteristics
 - Can start with Clause 72 PMD 10GBASE-KR
 - Need to change parameters from 10G to 5G
 - KR training can be used as is if included in the standard
 - Good subject of discussion as no raw 5G backplane PMD defined
- 5G Short Reach Copper Electrical Characteristics
 - Can start with Clause 85 PMD 40GBASE-CR4 except one lane instead of four
 - Need to change parameters from 10G to 5G
 - Good subject of discussion as no raw 5G copper PMD defined

Energy Efficient Ethernet

- Clause 78 Energy Efficient Ethernet
 - Need to specify the timing parameters for the new backplane speeds
 - Optional capability
- Need to discuss EEE within the new backplane PMD sections
- Leverage 1000BASE-KX and 10GBASE-KR as is
 - May need some timer adjustments, but no change needed in mechanism

Technically Feasible

- Scale up 1G and/or scale down 10G
- Incrementally add to the infrastructure already in place

THANK YOU

