
SIEMENS

Preemption

March 2013 IEEE 802.3 SG DMLT Orlando (FL)

Albert Tretter, Siemens AG

Objective of this Presentation

- Shows some of the expected features of preemption
- Gives an example of a preemption protocol based on the MAC Merge Layer and asks some questions
 - The MAC Merge Layer concept was presented in Phoenix by Pat Thaler: <u>http://www.ieee802.org/3/DMLT/public/jan13/Thaler-01-0113-dmlt.pdf</u>
- Should help for the discussion of PAR, 5C and objectives
- It is not the intention to choose a certain solution

Expected Features of Preemption

- Preemption should operate on a link basis:
 - Preemption should be active if both sides of the link supports preemption.
 - The necessary negotiations may be done with an appropriate peer-topeer protocol, like LLDP
- A preemptive frame can preempt the transmission of a preemptable frame one or more times
- Only one level of preemption required as proposed by the MAC Merge Layer presentation
- No frame overhead if no preemption occurs
- Minimized overhead at each fragment, respectively avoid padding

SIEMENS Possible Coding of Fragments Contains information that the receiver DA can proper allocate the received SA fragments in case of errors VLAN Fragment #1 Ethertype Payload (#1) Indicates to the receiver that the first **Preemtable Frame Frag_Status** fragment of a preempted frame Frag_FCS DA starts SA **PeerToPeer Multicast Destination VLAN** MAC address Ethertype MC-DA Preemption SA Neighbour Port MAC address Fragment #2 Ethertype Payload Payload (#2) Ethertype for preemption protocol **Frag_Status** FCS FCS MC-DA (tbd) Fragment #3 SA Ethertype (tbd) Payload (#3) **Frag Status FCS** Page 4 IEEE 802.3 SG DMLT - Orlando (FL) March 2013

Coding of the parameter Frag_Status

Bits	Parameter	Description
7:0	FrameNumber	The same FrameNumber is assigned to all fragments of a preempted frame.
		The FrameNumber is incremented only if a preemtable frame is preemted.
15:8	FragmentAttributes	Bits 13 to 8: FragmentNumber (0 to 63) Each fragment of a preemted frame gets an ascending FragmentNumber
		Bit 14: reserved (not used)
		Bit 15: more follows flag: 0: last fragment 1: more fragments follows

Properties of the proposal

- All fragments are well formed Ethernet packets, except the first fragment with the Frag_FCS (e. g. inverted FCS)
- In order to avoid padding all fragments have a length greater or equal 64 Bytes
- Preemptable frames with a frame length smaller than 106 Bytes are not preemted

SIEMENS

Summary

. . .

- Some questions has to be answered:
 - Which parameter (DA, SA, Ethertype, Frag_Status, Frag_FCS) are controllable by the MAC Merge Layer?
 - Are there other attributes which should be negotiated between the link partners:
 - Minimum fragment length: 64Byte, 96Byte, 128Bytes, ..?
 - Fragment alignment: 1Byte, 2 Bytes, 4 Bytes, 8Bytes, ...?
 - Preemption support of the link partner
- At some points our proposal may be a little bit over determined, there may be other proposals for a preemption protocol with less overhead

Thank You

IEEE 802.3 SG DMLT - Orlando (FL)

March 2013