Extended EPON PMDs

Call for Interest

Marek Hajduczenia, ZTE Corp.
IEEE 802.3 Working Group, consensus building meeting
San Francisco, CA, USA
July 19, 2011

Supporters

ordered by company name

- Ed Mallette, Bright House Networks
- Curtis Knittle, CableLabs
- Wang Bo, China Telecom
- Pei Zhang, China Unicom
- Phillip Chang, Comcast
- Charles Chen, Cortina
- Han-Hyub Lee, ETRI
- Duane Remein, FiberHome
- Hiroshi Hamano, Fujitsu Labs
- Victor Blake, Independent Contractor
- Hosung Yoon, Korea Telecom
- David Li, Ligent Photonics
- David Piehler, Neophotonics
- Liu Qian, RITT
- Frank Chang, Vitesse
- Marek Hajduczenia, ZTE Corporation

Objectives for this meeting

- To measure the interest in starting a study group to develop a standards project proposal (a PAR and 5 Criteria) for Extended EPON PMDs.
 - Precise scope of what 'Extended EPON PMDs' will be discussed and decided by the Study Group when formed
 - For the sake of further discussion, consider it as PMDs supporting power budgets in excess of 802.3ah and 802.3av specifications
- At this time, we don't need to
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose any one solution
 - Create PAR or five criteria
 - Create a standard or specification

EPON – current status

- IEEE Std 802.3av was published in October 2009
- Commercial deployments of 10G-EPON are under way in various locations around the world (Asia, North America)
- IEEE 1904.1 (SIEPON) project was created after the release of IEEE Std 802.3av, driven by industry interest
- End EPON users (service providers) have raised a number of key questions:
 - how to leverage EPON architecture in rural areas
 - how to further increase subscriber density in CO
 - how to decrease the cost of connection per subscriber
 - how to serve more people, at larger distance from CO using IEEE 802.3 EPON equipment and avoid proprietary solutions

Why a New CFI Now?

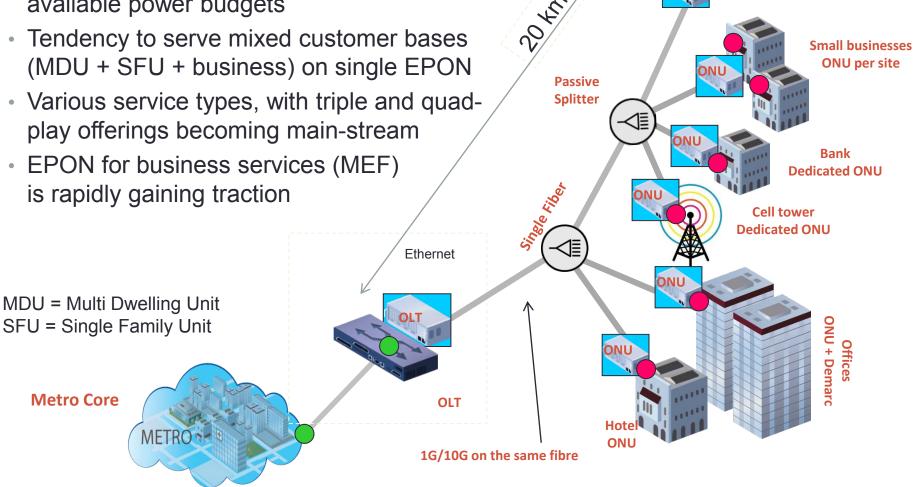
- A new effort is needed to bring operators and suppliers together and discuss extended power budgets for EPON
 - Discussions between service providers and system suppliers are already underway in several locations (China, Japan, USA)
 - We may see beginning of development of regional and noninteroperable PMD specifications and regionalization – not a good thing for EPON!
- IEEE 802.3 WG is the right location for such efforts
 - EPON was developed within 802.3 WG (802.3ah & 802.3av projects)
 - Other interest groups and service providers are looking to 802.3 WG for guidance on the future of EPON technology
 - A solution from 802.3 WG is needed to avoid proliferation of proprietary solutions and development of operator-specific solutions

"Extended EPON PMDs" Study Group Focus

- Examine the techno-economic feasibility of higher power budgets for EPON, including among the others extending existing 802.3ah and 802.3av specification by:
 - adding new power budget class(es) for 1G-EPON, 10/1G-EPON, and/or 10/10G-EPON, including extension to PMD specs and alternative mechanisms such reach extenders
 - extending existing management in Clause 45 as needed
- Discuss the number of new power budget classes, target power budget values etc.
- No new data rates, modulation formats etc. Changes to existing MAC and MAC Control definitions to be avoided.
- Reuse existing specifications and limit the number of new PMD types, changes on the ONU side and cost of the overall solution

Extended EPON PMDs Market

Call for Interest


Ed Mallette, Brighthouse Networks
IEEE 802.3 Working Group, consensus building meeting
San Francisco, CA, USA
July 19, 2011

Business location

ONU

 Typical reach/split of 20 km at 1:32, depending on the fiber plant, customer base, available power budgets

EPON needs to go further

- Neighborhoods close to COs and covered with fiber network are subject to fierce competition among service providers.
 Being able to serve customers further away from the CO becomes a market differentiator.
- Sometimes, fiber drops in already existing ODN need to be extended to support customers located further away from CO, increasing the distance between ONUs and OLT.
- <u>CONCLUSIONS</u>: existing limitations for differential loss may need to be revisited to accommodate larger distance between ONUs connected to the same OLT port. Also, maximum OLT – ONU distance needs to be extended.

EPON needs to go wider

- Proliferation of micro and pico cells increases the number of ONUs connected per OLT port.
- Being able to connect more customers to a single OLT port (assuming bandwidth demand is not a problem) leads to lower cost deployments (more connected subscribers share a port)
- <u>CONCLUSIONS</u>: need to support larger split ratios, leading to higher power budget requirements. 1:128+ split ratio at ~5 km is what operators are looking for today, with tendency to increase to 1:256/512 at 2-3 km distance for dense metro scenarios (~31-33 dB power budget).

EPON proliferation

- EPON is used in various applications around the world: SFU, business and commercial customers, mobile backhauling (with / without physical link protection), MDU with coax / LAN on UNI side, video distribution systems and industrial applications.
- Cost-effectiveness of EPON, its technical maturity and large industrial eco-system make it an attractive alternative to exiting xDSL / coaxial links.
- EPON is also used in emerging applications, developed because of EPON's techno-economic success. As an example, CableLabs developed a set of DPoE™ (DOCSIS Provisioning of EPON) specifications, using EPON as a replacement of DOCSIS for business and commercial services.

Extended EPON PMDs Technology

Call for Interest

David Li, Ligent Photonics
IEEE 802.3 Working Group, consensus building meeting
San Francisco, CA, USA
July 19, 2011

Technical status for EPON PMD

- 10G-EPON PMDs are available from several manufacturers. Such devices were considered state of the art when 802.3av-2009 was released.
- Development of EPON transceivers has not stopped with 802.3av-2009 publication. The focus of new developments is on improved launch power and better sensitivity 1G and 10G PMD components.

Higher power budget many choices!

- There are multiple ways of reaching higher power budget:
 - Increase transmitter launch power (improved lasers, external / internal amplifiers)
 - Increase receiver sensitivity (improved receiver sensitivity, preamplifier)
 - Include in-line amplification (reach extender) providing optical or OEO amplification for passing data streams
 - Decrease the ODN loss (lower loss fiber, improved splitter design etc.)
- Line cost and power consumption per subscriber are primary considerations when designing higher power budget solution for EPON.
- The resulting trade-offs will have to be examined under this project to achieve optimum mixture of advanced technology and low end cost

Extended EPON PMDs Summary & Straw Polls

A few words to wrap up

- New applications for EPON are emerging, requiring support for higher power budget(s) for various techno-economic reasons.
- IEEE 802.3 WG is the best forum to address these new requirements in an interoperable manner, preventing likely market segmentation and regionalization
- Support for higher power budgets can be realized today for 10G-EPON and 1G-EPON links in a cost-efficient manner, reusing 802.3 EPON ONU specifications and/or using alternative mechanisms as reach extenders.
- A Study Group within IEEE 802.3 WG is needed to examine this topic in more detail and provide guidance for the industry on EPON evolution in the higher power budget domain.

Call for Interest

 Should a Study Group be formed for "Extended EPON PMDs"?

(all people in the room)

- Yes:
- No:
- Abstain:

(802.3 WG voters only)

- Yes:
- No:
- Abstain:

Participation

• I will participate in the "Extended EPON PMDs" Study Group in IEEE 802.3 WG.

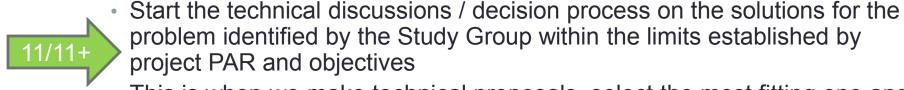
____ Tally

 My company would support participation in the "Extended EPON PMDs" Study Group in IEEE 802.3 WG

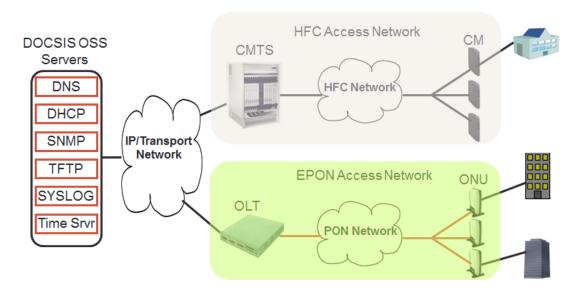
____ Tally

Backup Slides

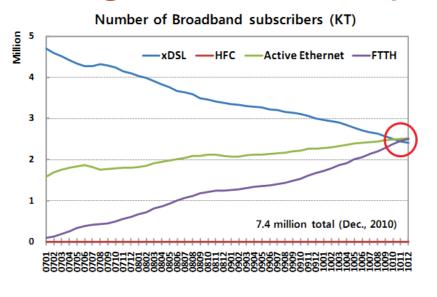
General Guidelines for When Things Get Done


CFI stage (where we are right now)

- Measure interest in forming a Study Group to examine the topic of interest (Extended EPON PMDs) and request 802.3 WG during the closing plenary to form such a Study Group
- Study Group (next step, if approved by 802.3 WG)


- Identify the scope of the future project and identify its goals, without selecting solution for the problem see example for 10G-EPON: http://www.ieee802.org/3/av/tf docs/10gepon objectives 0706.pdf
- Based on the identified scope and goals, fill in PAR and 5 Criteria documents (examples for 10G-EPON available at http://www.ieee802.org/3/av/tf_docs/10gepon_5criteria_0506.pdf, http://standards.ieee.org/about/sasb/nescom/projects/802-3av.pdf)
- Task Force (future step, if PAR approved by 802 EC and NesCom)

 This is when we make technical proposals, select the most fitting one and do draft development + commenting. Not before.


DOCSIS Provisioning of EPON

- What is added in DPoE specifications: management, provisioning, accounting, troubleshooting and service configuration.
- Additional requirements for PHY layer e.g. transceiver monitoring support.

- Defines specifications for EPON devices to support DOCSIS network provisioning and service concepts, reusing existing 802.1 and 802.3 standards, where available
- Builds on the flexibility of EPON technology and its similarity (at logical level) to DOCSIS.
- Introduces cost-effective, fiber-based alternative to coax access infrastructure, allowing MSOs lower CAPEX and OPEX for access networks.

Largest EPON deployments

Source: Korea Communications Commission

Source: OFC 2012, NMB Workshop, "FTTx in Japan"

KT (S. Korea), 2.6 million lines, Dec 2010

Japan, 19.1 million lines, Dec 2010

- In 2011Q1, 21 million subscribers in China were connected to EPON based access (~6 million new subs for xDSL in the same period)
- In total, ~210 million subscribers served via EPON around the world (MDU, SFU, SBU scenarios) as of 2011Q1 (source: internal ZTE study)