

Marvell. Moving Forward Faster

8N/(8N+1) PCS encoding for GEPOF

GEPOF – Study Group- November 2014

William Lo, Marvell

1

IEEE 802.3 GEPOF – Study Group- November 2014

Leverage PCS encoding from 802.3bp

- Asked by GEPOF study group members to share what was done in 1000BASE-T1 Task Force
- This presentation based on Lo_3bp_02_0314.pdf presented in Beijing and correction in Lo_3bp_01_0514.pdf
 - See presentation for motivations for using 8N/(8N+1) coding

- 1 bit overhead per 8N bits payload
- Maps GMII data onto 8N+1 bit blocks
- N can be 1 to 16 depending on need
- Flexible N allows 8N+1 block to fit with downstream FEC
- N GMII transfers are packed to 8N+1 bit block
- Control symbols can be anywhere in the N GMII transfers
- Will use N=8 as examples in this presentation

Data Block Encoding

- All N GMII transfers are data bytes
- I bit header set to 0. N data bytes are concatenated

0		Data 0			Data 1			Data 2			Data 3			Data 4			Data 5			Data 6			Data 7	
Ŭ	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7

Control Block Encoding

- If at least 1 GMII transfer is a control byte then 1 bit header is set to 1
- Control byte mapped as a split 5 bit pointer + 3 bit control code
- Bit 0 to 3 of pointer points to next byte that is a control symbol
- Bit 4 of pointer indicates whether the next control symbol is the final control symbol of the block
 - 0 = final one, 1 = more control symbols

Example: D/C/D/C/C/D/C/D

More Examples

All control codes

Start of packet on byte 2

Head	Byte	e 0	Byte	e 1		Byte 2			Byte 3			Byte 4			Byte 5			Byte 6			Byte 7	
liead	0 ••	• 7	0 •••	• 7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7
1	00001	Ctrl 0	10000	Ctrl 1		Data 2			Data 3			Data 4			Data 5			Data 6			Data 7	
•	0 ••• 4	012	0 ••• 4	012	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7	0	•••	7

End of packet on byte 4

Head	Byte 0 Byte 1					Byte	2		By	Byte 4				Byte	e 5		Byte	6	Byte 7						
liead	0	•••	7	0	•••	7	0	•••	•	70	• 0	••	7	0	•••		7 0	• •	• 7	0	•••	• 7	0.	••	7
1	101	01	Da	ata 0		D	ata 1			Dat	ta 2		Dat	ta 3		Ι	Data 4	4	Ctrl 5	01	101	Ctrl 6	11100	Ctrl	7
•	0 ••	• 4 0	•	•••	7 0)	•••	7	0	• •	••	7 0	•	••	7	0	•••	7	0 1 2	0 •	••• 4	012	0 ••• .	4 0 1	2
										_															
IEEE	EEE 802.3 GEPOF – Study Group- November 2014													6		M	A R V	ELL							

GMII Control Code Mapping

3 bit control code

Control Code[0:2]	GMII Transmit	GMII Receive
001	Transmit Error Propagation	Data Reception Error
010	Normal Inter-Frame	Normal Inter-Frame
101	Assert Low Power Idle	Assert Low Power Idle
else	Reserved	Reserved

Error handling

- Encoding sensitive to bit errors. Need some form of FEC after encoding
- If FEC cannot correct errors then FEC marks all 8N/(8N+1) blocks as errors. If not done then:

Unobservable errors

- Header bit corrupted to 0
- Data byte corrupted
- Pointer corrupted to another valid pointer
- Control code corrupted to another valid control code
- Hopefully CRC on MAC layer will catch

Observable errors

- Pointer pointing to byte that does not exist
- Pointer not pointing to later byte
- Invalid control code
- 8N/(8N+1) block marked as error when observable error detected

Possible Extensions

Can extend concept to N = 1 to 32 if we use 6 bit pointers and 2 bit control code for a max of 256/257

Formal Encoder Definition (5 bit pointer)

Define:

- N = number of GMII bytes encoded into block
- Bytes numbered n = 0, 1, 2, ..., N-1. Byte 0 is the first one presented on GMII.
- TC[n] = 0 if byte n is data byte on GMII, 1 if byte n is control byte on GMII
- TC[-1] = 1 by definition
- TD[n][0:7] = GMII byte n TXD[0:7] if TC[n] = 0
- TD[n][5:7] = 010 IPG, 101 LPI, 001 TX Error if TC[n] = 1. TD[n][0:4] is undefined.
- B[0:8N] is the 8N+1 block. Bit 0 transmitted first.
- OR(p) = Bitwise OR of TC[p:N-1]
- NEXT(p)[0:3] = bit position of lowest bit in TC[p:N-1] that is a 1. Bit 3 is MSB.
- NEXT(p)[4] = 0 if Bitwise SUM of TC[p:N-1] = 1, else 1
- ▶ B[0] = OR(0)
- B[8n+1:8n+4] =
 - TD[n][0:3] if OR(n) = 0
 - NEXT(n)[0:3] if OR(n) = 1 AND TC[n-1] = 1
 - TD[n-1][3:6] if OR(n) = 1 AND TC[n-1] = 0

- B[8n+5] =
 - TD[n][4] if OR(n) = 0
 - NEXT(n)[4] if OR(n) = 1 AND TC[n-1] = 1
 - TD[n-1][7] if OR(n) = 1 AND TC[n-1] = 0
- B[8n+6:8n+8] =
 - TD[n][5:7] if OR(n) = 0
 - TD[n][5:7] if OR(n) = 1 AND TC[n] = 1
 - TD[n][0:2] if OR(n) = 1 AND TC[n] = 0

THANK YOU

IEEE 802.3 GEPOF – Study Group- November 2014