Delay Constraints in 40GBASE-T

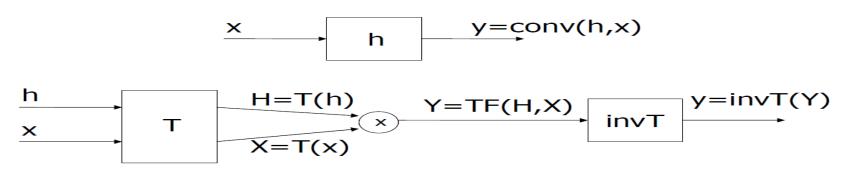
IEEE 802.3: 40G-BASE-T Task Force

Peter Wu, William Lo Marvell Semiconductor

Supporters

Outlines

- Review delay constraints (i.e., latency) limit for 10GBASE-T
 - 25600BT- (i.e., 8 LDPC frames, 2.56us)
 - Defined in Clause 55.11
 - The sum of TX & RX path delays (PHY Medium delay not included)
 - Main latency
 - Frequency domain Echo/Next cancellation and LDPC decoder
- 40GBASE-T
 - Analysis on latency numbers for 40GBASE-T transceivers


Latency at 10GBASE-T transceiver

- The main latencies are shown in ns and LDPC frames
- The latency is traded off for power at ENX and some blocks

Blocks	Latency (ns)	LDPC frames	Note
LDPC decoder	> 640ns	> 2	RX
Echo/Next canceller	600 ~ 1200ns	2~ 4	TX or RX side Frequency domain Filtering Trade off power and latency
Others: FIFO, pipelines and PCS etc.	mid~high 100's ns	1 ~2	TX and RX
Total latency	2000~2500ns	6 ~ 8	marginal meets 8 frame latency limit

Why DFT FIR for Filtering with long taps?

DFT FIR:

	ECHO	NEXT	FEXT	FF EQ	Total FIR
FIR length	500	300	100	80	
BlockSize or net samples	524	724	156	176	
FFTsize	1024	1024	256	256	
log2N	10	10	8	8	
Real operations/sample for FIR	500	300	100	80	7120
Total operations/block for DFT FIR					
(4*(N/2)log_2(N)*2+4*N)/2	22528	22528	4608	4608	
Real operations/sample for FFT	43	31	30	26	1005
Approx Savings	91%	90%	70%	67%	86%
Gain	11x	10x	3x	3x	7x

^{*}Reference: http://www.ieee802.org/3/10GBT/public/sep03/kasturia_1_0903.pdf

Echo/NEXT cancellation – DFT FIR

At 10GbaseT:

- Total XTALK cancellation tap number at a 10G port: ~1000*4 (echo)+300*12 (Next)+128*12 (Fext) ~ 9000 taps!!!
- With 90% power savings compared to time domain FIRs
- Time domain FIR implementation is not an option

Cons:

- Higher latency
- Algorithm latency (algorithm FFT size/2) and implementation latency

Extrapolation of Latency at 40GBASE-T

- 30meter cable with 4x of symbol rate:
 - Echo Taps requirements = $N_{10GBASE-T}*30/100*4 \sim (1.2*N_{10GBASE-T})$
 - Still need to do it in DFT FIRs

Latency at 40GBASE-T transceiver

Blocks	10GBASE-T (LDPC frames)	40GBASE-T (LDPC frames)
LDPC decoder	> 2	> 2*
Echo/Next canceller	2~ 4	2.4~ 4.8 Higher because of longer taps
Others: FIFO, pipelines and PCS etc.	1 ~2	1 ~2*
Total latency	6 ~ 8	6 ~ 8*

^{* 65}nm to 16nm may not hit 4X speed, more parallel architecture may increase latency.

Conclusions:

- keep latency constraints not lower than 25600BT.
- Challenges to meet:
 - Echo will take longer
 - More parallelism will take longer
- Let the PHY venders to find the best trade off for power and latency under this constraints.

Thank you