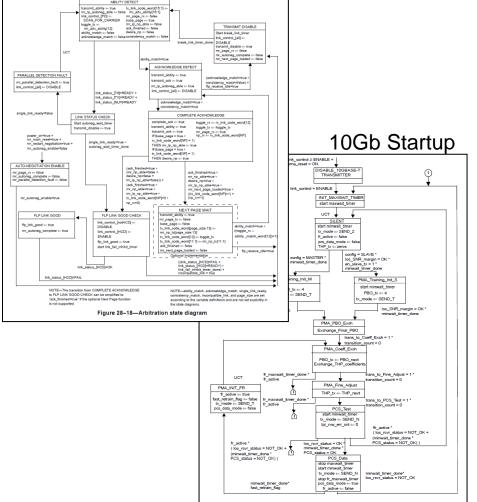
User Perception of 10GBASE-T Training time/Time-To-Link

IEEE P802.3bq 40GBASE-T Task Force


Dave Chalupsky, Intel Pete Cibula, Intel

PHY Baseline Proposal Ad Hoc – 27 February 2014

What is Time-To-Link (TTL)?

- Time-To-Link (TTL): A system performance metric that characterizes and measures PHY behavior through autonegotiation and the 10GBASE-T startup sequence
 - Defined in 802.3 Clause 28,
 "Physical Layer link signaling for Auto-Negotiation on twisted pair" and 802.3 Clause 55, Subclause
 "55.4.2.5.14 Startup sequence")
- One of two primary performance measures (along with BER) used to characterize 10GBASE-T physical layer link interoperability

Autonegotiation

Why is it Important?

- Server networking drivers must meet 3rd-party certifications
- Example Windows Hardware Quality Labs (WHQL) testing & certification "devfund"
 - A series of "device fundamentals" tests to evaluate the compatibility, reliability, performance, security and availability of a device in Windows OS
 - Includes many automated driver stress tests that execute multiple device resets
 - Long link times appear as a "failure" to these tests, which expect a link in 3s-4s based on 10Mb/100Mb/1Gb PHY performance

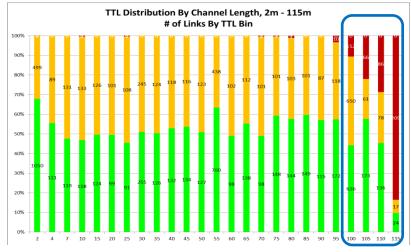
Server device fundamentals requirements

Test Applicability Matrix

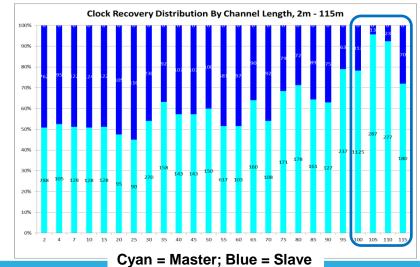
Mapping of Tests to Various Operating Systems

Device Fundamentais Tests	Only If INF provided	Server 2003	ХР	Vista	Windows 7	Server 2008 R2
Common Scenario Stress with IO	×	~	~	~	~	~
Sleep Stress With IO	×	~	~	~	~	~
Disable Enable With IO	×	~	~	~	~	~
Device Path Exerciser	~	~	~	~	~	~
Run INFTest against a single INF	~	~	~	~	~	~
Plug and Play Driver Test	~	~	~	~	~	~
Embedded Signature Verification	×	×	×	~	~	~
Reinstall With IO	×	×	×	~	~	~
CHAOS - Concurrent Hardware & OS	~	×	×	×	~	~
Device Install Checks (2 tests)	×	×	×	×	~	~
IO Cancellation Tests (2 tests)	×	×	×	×	~	~
WDFTester	×	×	×	~	~	~
Dynamic Partitioning	×	~	×	×	×	~
Multiple Processor Group	×	×	×	×	×	~

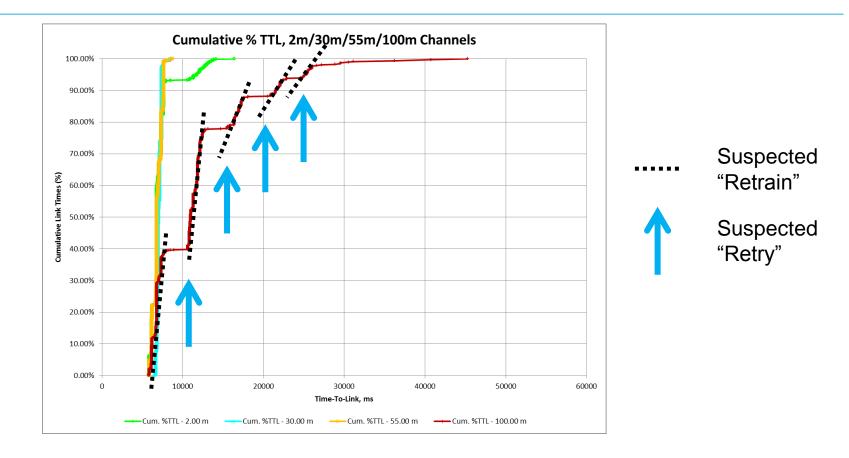
Source: Device Fundamentals Overview Presentation at <u>Ihv_devfund.pptx</u>


• Long TTLs (>6s) can lead to device certification failures!

Link Interoperability Measurements


- Representative Link Interoperability metrics associated with TTL
 - Time-To-Link (Time to achieve link after link initiation event)
 - # Link Attempts (Number of attempts for each link)
 - # Link Drops (Number of link drops observed after link is established)
 - Clock Recovery (Master/Slave resolution)
 - TTL Distribution (% of links by link time)
 - Speed Downshift/Downgrade (Resolved speed if other than 10Gb/s)

Example: TTL Distribution and Master/Slave Resolution by Channel Length


- Example of 10GBASE-T TTL measured from 2m to 115m channels (9,790 links)
- TTL across 2m-100m
 - Average TTL = 7.6s
 - Average time in AN = 5s
 - Average time in training = 2.6s
- Note apparent loop timing trend towards MASTER preference with increasing channel length
- Very long TTLs (>15s) at 100m+ channels are associated with downshifts to 1Gb link speed

Green: TTL <= 7s; Yellow: 7s < TTL <=15s; Red: TTL >15s

Time-To-Link Levers?

- TTL is a combination of both autonegotiation and 10Gb startup behavior
 - Two sources of variability? "Retrain" (variability through 55.4.6.1) and "Retry" (return to 28.3.4)
 - Longest TTLs typically driven by multiple passes through the Clause Arbitration state diagram after failed training attempts

Observations from 10GBASE-T

- Channel topologies significantly affect the channel solutions realized by PHY DSP systems
 - "Peaky" impairments (return loss, crosstalk) appear to be a factor in link-trial-to-link-trial variability in the system solution
 - Transition region between RL/crosstalk-driven to IL-driven solutions
 - Channel lengths near 10GBASE-T PBO transitions
- PHY-specific responses to channel characteristics drive variability in autonegotiation and training time
 - Loop timing/clock recovery resolution
 - Time spent in 10GBASE-T startup states
- May have implications for both system performance and end-user experience
 - Potential to affect product time-to-market and customer ease-of-use

Considerations for 40GBASE-T

 Can autonegotiation and 40GBASE-T startup times be improved to be consistently less than or equal to 6s?

- Improved loop timing?

- Changes in 10GBASE-T startup state timing?
 - Example Simple PBO scheme similar to that proposed in Wu_01a_0214_802.3bq_adhoc.pdf
- Others?

Thank You!

Test Channels

- Focused channel selection using multiple cable types and lengths
 - 2m, 4m, 7m, 30m, 55m, 90m and 100m are "standard" channels for both TTL and BER
 - Other channel lengths (typically 5m increments) are used to check for consistent link behavior over a range of PHY channel solutions (different PBOs, operating margin, delay/delay skew, etc.)
- Includes direct connection, 2-connector, and 4connector topologies
- Test channel matrix will (of course) be modified for 40GBASE-T