DOCUMENT SUBMITTED TO: TR-42 Meeting

The document to which this cover statement is attached is submitted to a Formulating Group or sub-element thereof of the Telecommunications Industry Association (TIA) in accordance with the provisions of Sections 6.4.1-6.4.6 inclusive of the TIA Engineering Manual dated March 2005, all of which provisions are hereby incorporated by reference.

SOURCE:	Link Length Survey Task Group	
CONTACT:	Shadi AbuGhazaleh Hubbell Inc. 40 Waterview Drive, Shelton CT 06484 475-882-4747 Email: sabughaz@hubbell.com	
TITLE:	Summary of link length survey results	
PROJECT NUMBER (PN):	PN-568-C.2-1	
DISTRIBUTION:	TR-42.7	
INTENDED PURPOSE OF DOCUMENT:	-	FOR INCORPORATION INTO
	-	FOR INFORMATION
	-	OTHER (Please describe)

ABSTRACT: This contribution presents highlights and analysis of the link length survey as proposed by the TG for consideration by TIA TR42.7 and sharing with IEEE802.3 NGBASE-T Study Group.

PATENT DISCLOSURE [OPTIONAL]
The Source may have patent(s) and/or published pending patent application(s) that may be essential to the practice of all or part of this Contribution as incorporated in a TIA Publication, and the Source is willing to comply with Paragraphs 1, 2(a), or 2(b) of ANNEX H of the TIA Engineering Manual dated March 2005 as to such patent(s) and/or published pending patent application(s).

Link Length Survey Report

TIA TR42.7

General Description of the Survey

- Survey sent out by TIA TR42.7 to readers of "Cabling Installation and Maintenance"
- Survey open for 30 days
- 23 respondents

Observations

Respondent Description

Owner	4
Installer	2
Designer	9
Integrator	6
Manufacturer	2

Number of Anticipated Links
<100 2
$<1000 \quad 4$
<10,000 12
<100,000 3
$>100,000 \quad 2$

A good number are already planning for $>$ 10GBASE-T
10GBASE-T 11
40GBASE-T 5
100GBASE-T 5
Highest cabling category anticipated
Category $5 \mathrm{e} \quad 1$
Category 6
Category 6A 11
Higher than Category 6A 9

- Numbers represent the number of respondents that answered each question

Observations

Link configurations utilized by respondents

	End to End Link	2	3	4
		Connector Channel	Connector Channel	Connector Channel
Never	3	0	3	7
Occasionally	11	6	13	14
Often	8	13	5	0
Always	1	4	1	1

- Numbers represent the number of respondents that answered each question

responder	$\%<20 \mathrm{~m}$	$\%<30 \mathrm{~m}$	$\%<40 \mathrm{~m}$	$\%<50 \mathrm{~m}$
1	30%	40%	20%	10%
2	30%	30%	20%	20%
3	50%	60%	70%	80%
4	20%	40%	80%	100%
5	30%	40%	50%	80%
6	90%	10%		
7	80%	90%	100%	100%
8	20%	30%	30%	20%
9	90%	10%		
10	20%	40%	60%	80%
11	50%	70%	90%	100%
12	10%	50%	20%	10%
13			90%	
14	50%	50%	100%	100%
15	30%	30%	20%	20%
16	20%	20%	30%	30%
17	10%	20%	30%	40%
18	30%	40%	50%	60%
19	30%	60%	80%	90%
20	30%	50%	70%	90%
21	20%	20%	30%	50%
23	20%	30%	50%	80%
10	10%	30%	50%	10%
10				

Length Data

Here is the raw link length distribution data from the survey

It is apparent that some responders answered as if the four options were four separate buckets.

The following slide shows the raw data corrected for this.

responder	$\%<20 \mathrm{~m}$	$\%<30 \mathrm{~m}$	$\%<40 \mathrm{~m}$	$\%<50 \mathrm{~m}$
1	30%	70%	90%	100%
2	30%	60%	80%	100%
3	50%	60%	70%	80%
4	20%	40%	80%	100%
5	30%	40%	50%	80%
6	90%	100%	100%	100%
7	80%	90%	100%	100%
8	20%	50%	80%	100%
9	90%	100%	100%	100%
10	20%	40%	60%	80%
11	50%	70%	90%	100%
12	10%	60%	80%	90%
13			90%	
14	50%	50%	100%	100%
15	30%	60%	80%	100%
16	20%	40%	70%	100%
17	10%	30%	60%	100%
18	30%	40%	50%	60%
19	30%	60%	80%	90%
20	30%	50%	70%	90%
21	20%	20%	30%	50%
22	20%	30%	50%	80%
23	10%	40%	90%	100%
2				

Cumulative link length distribution: highlighted data changed from "buckets" to cumulative.

The following slide shows the data converted to separate buckets, with an implied bucket for $>50 \mathrm{~m}$.

responder	$0-20 \mathrm{~m}$	$20-30 \mathrm{~m}$	$30-40 \mathrm{~m}$	$40-50 \mathrm{~m}$	$>50 \mathrm{~m}$
1	30%	40%	20%	10%	0%
2	30%	30%	20%	20%	0%
3	50%	10%	10%	10%	20%
4	20%	20%	40%	20%	0%
5	30%	10%	10%	30%	20%
6	90%	10%			0%
7	80%	10%	10%	0%	0%
8	20%	30%	30%	20%	0%
9	90%	10%			0%
10	20%	20%	20%	20%	20%
11	50%	20%	20%	10%	0%
12	10%	50%	20%	10%	10%
13			90%		10%
14	50%	0%	50%	0%	0%
15	30%	30%	20%	20%	0%
16	20%	20%	30%	30%	0%
17	10%	20%	30%	40%	0%
18	30%	10%	10%	10%	40%
19	30%	30%	20%	10%	10%
20	30%	20%	20%	20%	10%
21	20%	0%	10%	20%	50%
22	20%	10%	20%	30%	20%
23	10%	30%	50%	10%	0%

"Bucket" Length distribution: highlighted data changed from cumulative to "buckets"

Length distributions

$0-20 \mathrm{~m}$	$20-30 \mathrm{~m}$	$30-40 \mathrm{~m}$	$40-50 \mathrm{~m}$	$>50 \mathrm{~m}$	
bucket average	35%	20%	20%	16%	9%
cumulative average	35%	55%	75%	91%	100%

Cumulative average distributions and the bucket averages, for the 22 responders that gave complete responses.

Results summary

- 23 respondents,
- Cross-section of all stake-holders
- Representing about 700K links
- Broad Market Potential -
- 10 of the 23 respondents, design professionals, integrators, installers and owner operators, are already anticipating speeds beyond 10GBASE-T
- Data is generally in-line with previous data shown to the group -
- Longer reach provides more coverage
- A 20m reach would cover only 35\% of responses... probably too short
- A 30m reach would cover 55\%... better
- A 40m reach would cover 75\% of responses

Raw survey results, complete

Respondent	What is the maximum link length you anticipate needing in the data center? (Please make selections in all fields that are within your expertise)		
	Small Data Center Maximum Link Length	Medium Data Center - Maximum Link Length	Large Data Center Maximum Link Length
1	$10 \mathrm{~m} \mathrm{(33} \mathrm{ft)}$	$20 \mathrm{~m} \mathrm{(66ft)}$	40 m (131 ft)
2	$30 \mathrm{~m} \mathrm{(98ft)}$	50 m (164 ft)	80 m (262 ft)
3	50 m (164 ft)	30 m (98 ft)	5 m (16 ft)
4	50 m (164 ft)	80 m (262 ft)	100 m (328 ft)
5	60 m (197 ft)	80 m (262 ft)	100 m (328ft)
6	$30 \mathrm{~m} \mathrm{(98ft)}$	$30 \mathrm{~m} \mathrm{(98ft)}$	30 m (98ft)
7	10 m (33 ft)	20 m (66 ft)	40 m (131 ft)
8	10 m (33 ft)	30 m (98 ft)	50 m (164 ft)
9			30 m (98 ft)
10	50 m (164 ft)	70 m (230 ft)	100 m (328 ft)
11	$20 \mathrm{~m} \mathrm{(66} \mathrm{ft)}$	40 m (131 ft)	50 m (164 ft)
12	10 mm (33 ft)	50 m (164 ft)	90 m (295 ft)
13			100 m (328 ft)
14		40 m (131 ft)	
15	20 m (66 ft)	40 m (131 ft)	80 m (262 ft)
16	40 m (131 ft)	60 m (197 ft)	90 m (295 ft)
17	30 m (98ft)	70 m (230 ft)	100 m (328ft)
18	30 m (98 ft)	50 m (164 ft)	70 m (230 ft)
19	30 m (98ft)	60 m (197 ft)	$100 \mathrm{~m} \mathrm{(328ft)}$
20	$10 \mathrm{~m}(33 \mathrm{ft})$	30 m (98 ft)	60 m (197 ft)
21	5 m (16 ft)	30 m (98 ft)	60 m (197 ft)
22	50 m (164 ft)	70 m (230 ft)	90 m (295 ft)
23	90 m (295 ft)		

Respondent	Please estimate the percentage of data center connections that would be covered if the maximum allowable server link lengths were limited to $20 \mathrm{~m}, 30 \mathrm{~m}, 40 \mathrm{~m}$ or 50 m ($66 \mathrm{ft}, 98 \mathrm{ft}, 131 \mathrm{ft}$ or 164 ft respectively).			
	20m - Total pecentage of links shorter than		40m - Total pecentage of links shorter than	50m - Total pecentage of links shorter than
1	30\%	40\%	20\%	10\%
2	30\%	30\%	20\%	20\%
3	50\%	60\%	70\%	80\%
4	20\%	40\%	80\%	100\%
5	30\%	40\%	50\%	80\%
6	90\%	10\%		
7	80\%	90\%	100\%	100\%
8	20\%	30\%	30\%	20\%
9	90\%	10\%		
10	20\%	40\%	60\%	80\%
11	50\%	70\%	90\%	100\%
12	10\%	50\%	20\%	10\%
13			90\%	
14	50\%	50\%	100\%	100\%
15	30\%	30\%	20\%	20\%
16	20\%	20\%	30\%	30\%
17	10\%	20\%	30\%	40\%
18	30\%	40\%	50\%	60\%
19	30\%	60\%	80\%	90\%
20	30\%	50\%	70\%	90\%
21	20\%	20\%	30\%	50\%
22	20\%	30\%	50\%	80\%
23	10\%	30\%	50\%	10\%

Respondent	Not counting the connections at the active equipment (e.g. switches, servers or routers), do you install (or plan to install) channels with the following number of connections in a data center?			
	End-to-End links (Direct patch cord connection) - Copper Channels	Channels with 2 Connections - Copper Channels	Channels with 3 Connections Copper Channels	Channels with 4 Connections Copper Channels
1	Often	Often	Occasionally	Occasionally
2	Never	Always	Never	Occasionally
3	Often	Occasionally	Occasionally	Occasionally
4	Occasionally	Often	Often	Always
5	Often	Often	Occasionally	Occasionally
6	Occasionally	Always	Never	Never
7	Never	Often	Occasionally	Occasionally
8	Never	Occasionally	Often	Occasionally
9	Often	Often	Occasionally	Occasionally
10	Occasionally	Always	Occasionally	Never
11	Occasionally	Often	Occasionally	Never
12	Often	Often	Occasionally	Never
13	Occasionally	Often		
14	Often	Often	Occasionally	Never
15	Often	Occasionally	Occasionally	Occasionally
16	Occasionally	Often	Occasionally	Occasionally
17	Occasionally	Occasionally	Often	Occasionally
18	Occasionally	Occasionally	Occasionally	Occasionally
19	Occasionally	Often	Often	Occasionally
20	Always	Occasionally	Never	Never
21	Occasionally	Always	Occasionally	Never
22	Often	Often	Often	Occasionally
23	Occasionally	Often	Always	Occasionally

Respondent	Please provide an estimate of the total number of cabling links that you anticipate installing over the next three years:	Please tell us about the cabling and applications you anticipate	
	Total number of links	Answer - Highest Cabling Category	Answer - Fastest Application
1	< 10,000 links	Higher than Category 6A	40GBASE-T
2	< 1,000 links	Category 6A	I don't know
3	<100	Higher than Category 6A	100GBASE-T
4	< 100	Higher than Category 6A	100GBASE-T
5	< 100,000 links	Higher than Category 6A	40GBASE-T
6	< 100,000 links	Category 5e	10GBASE-T
7	More than 100,000 links	Category 6	10GBASE-T
8	$<10,000$ links	Category 6A	100GBASE-T
9	< 100,000 links	Category 6A	40GBASE-T
10	< 10,000 links	Higher than Category 6A	I don't know
11	$<10,000$ links	Category 6	10GBASE-T
12	< 10,000 links	Category 6A	10GBASE-T
13	< 10,000 links	Category 6A	10GBASE-T
14	< 1,000 links	Category 6A	10GBASE-T
15	< 1,000 links	Category 6A	10GBASE-T
16	< 10,000 links	Category 6A	10GBASE-T
17	More than 100,000 links	Higher than Category 6A	40GBASE-T
18	$<10,000$ links	Category 6A	10GBASE-T
19	< 10,000 links	Category 6A	10GBASE-T
20	< 10,000 links	Higher than Category 6A	100GBASE-T
21	< 1,000 links	Category 6A	10GBASE-T
22	$<10,000$ links	Higher than Category 6A	40GBASE-T
23	< 10,000 links	Higher than Category 6A	100GBASE-T

Respondent			
	Phat is your job function with your provide any additional comments or information that may aid in the development of the next		
generation of cabling.			

