# Relative Power Estimates for 40GBASE-T over 25m and 30m on Category 8

Contribution to IEEE 802.3: NG-BASE-T Study Group Interim Meeting January 2013 Phoenix, AZ USA

> George Zimmerman, Ph.D. CME Consulting / Commscope

## Supporters

- Will Bliss, Broadcom
- David Chalupsky, Intel
- Michael Grimwood, Broadcom
- Paul Kish, Belden
- Wayne Larsen, Commscope
- William Lo, Marvell
- Gavin Parnaby, Marvell
- Sterling Vaden, OCC
- Peter Wu, Marvell

### Overview

- Methodologies
- Power and Reach #1 Insertion Loss Comparisons
- Power and Reach #2 10GBASE-T PHY power scaling
- Power and Reach #3 Detailed PHY analysis
- Reconciliation with Bliss
- Conclusions

### Methodologies

- In signal processing-heavy PHYs, power and complexity are difficult to estimate without detailed design
  - But detailed design waits for Task Force!
    - Estimates on 10GBASE-T ranged from 44X 1000BASE-T power to 6X 1000BASE-T power
    - First-generation was ~ 12X 1000BASE-T power at the time, today's is ~5-10X
- Study Group predictions inherently leave out three things
  - Overhead effects (leakage, interfaces)
  - Innovation driven by challenges
  - Problems uncovered during task force

# Methodologies (2)

- Proposed Method surround the problem
  - Consider channel differences
    - Provides a sanity check as to how much results should differ
  - Consider existing PHYs
    - Includes overhead effects and possibly relevant architectures
    - Understate optimization, because its based on one solution to an existing problem
  - Consider complexity/power models based on modulation/impairment studies
    - E.g., cancellation, receiver noise, bandwidth requirements
    - Provides relative estimation
    - Leaves out overhead and architecture change effects
- Consider all 3 to bound the space

## Importance of Insertion Loss

- All PHY assumptions assume cancellation of internal noise
- All PHY assumptions are driven by external or circuit noise limitations
- Insertion loss determines TX power, RX noise floor, Cancellation and Equalization requirements
- Existing PHYs can be examined for IL
  - IL at the middle of the used band (1/2 Nyquist) is a good single metric, sometimes Nyquist is used too.

#### IL sensitivity is common to all estimations

#### Comparative Technologies & IL

| Technology                         | Bits /<br>Sec /<br>Hz /pair | Mid-Band<br>Freq. (1/2<br>Nyquist) | Insertion Loss<br>at Mid Band      | Band-<br>edge<br>Freq.<br>(Nyquist) | Insertion<br>Loss at<br>Band-edge | Primary<br>Impairments                                  |
|------------------------------------|-----------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------------------------|
| 100BASE-TX<br>(dual-<br>simplex)   | 2                           | 31.25<br>MHz                       | 12.6 dB                            | 62.5 MHz                            | 18.5 dB                           | Near-End Crosstalk<br>& Intersymbol<br>Interference     |
| 1000BASE-T<br>(echo-<br>cancelled) | 4.1                         | 31.25<br>MHz                       | 12.6 dB (100m)<br>>18 dB (typical) | 62.5 MHz                            | 18.5 dB                           | Far-End &<br>(residual) Near-End<br>Crosstalk           |
| 10GBASE-T<br>(echo-<br>cancelled)  | 6.35                        | 200 MHz                            | 31.7 dB                            | 400 MHz                             | 46.9 dB                           | Alien Crosstalk &<br>Receiver<br>Noise/Residual<br>Echo |
| 40GBASE-<br>CR4 (simplex)          | 2                           | 2.571825<br>GHz                    | 12.7 dB*                           | 5.15625<br>GHz                      | 20.9 dB                           | Timing Jitter, Near<br>& Far-End<br>Crosstalk           |

\* Loss is for cable assembly – Including PCB channel loss, mid band IL is up to 16.5dB

#### 802.3an vs. Cat 8 25-30m Insertion Loss

| 802.3an Channel Insertion Loss (IL)                                                                                             | 200 MHz   | = 31.7dl | B (100m)<br>IB (100m) |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------|
|                                                                                                                                 | 400 MHz   | = 46.9 d | IB (100m)             |
| Insertion loss $(f) \le 1.05 \left( 1.82 \times \sqrt{f} + 0.0169 \times f + \frac{0.25}{\sqrt{f}} \right) + 4 \times 10^{-10}$ | 0.02 × √ƒ | (dB)     | (55–11)               |

#### 40GBASE-T: TIA PN-568-C.2-1 draft 0.4 channel IL (30m cable)

Insertion loss  $(f) \le 0.32 \left( 1.80 \sqrt{f} + 0.005 f + \frac{0.25}{\sqrt{f}} \right) + 2 \cdot B + 0.0324 \sqrt{f} \, dB$ ,

Where B=connecting hardware insertion loss (dB):

| Frequency              | B, Connecting HW IL (dB)                                   |  |  |  |
|------------------------|------------------------------------------------------------|--|--|--|
| 1≤ <i>f</i> ≤500MHz    | $0.02\sqrt{f}$                                             |  |  |  |
| 500≤ <i>f</i> ≤2000MHz | $(0.008\sqrt{f} + 0.00029 \cdot f + 0.5 \cdot 10^{-6}f^2)$ |  |  |  |

| Frequency | 25m     | 30m     |  |  |
|-----------|---------|---------|--|--|
| 500MHz    | 13.2 dB | 15.3 dB |  |  |
| 1000MHz   | 19.8 dB | 22.9 dB |  |  |
| 800MHz    | 17.3 dB | 20.0 dB |  |  |
| 1600MHz   | 27.0 dB | 31.0 dB |  |  |

#### 10GBASE-T IL is substantially more (46.9 vs. 31 dB) than 30m target

#### Power and Reach #1 – Insertion Loss Comparison

- Insertion loss varies less than 16% from 25 to 30m (20% variation in length)
  - Unlikely to drive major architecture or bandwidth variation
- Insertion loss varies 2 to 4 dB between 25 & 30m
  - About 2X Connector + ILD budgets
  - Within cabling margin
  - Less than differences in PHY design points

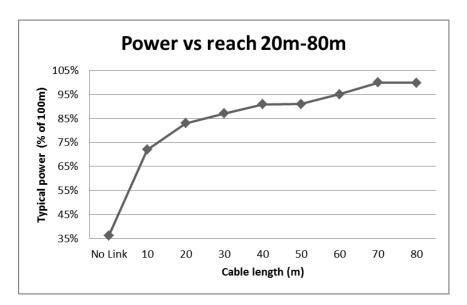
#### At either point, insertion loss looks more like 1000BASE-T than 10GBASE-T

#### Power and Reach #2 – 10GBASE-T PHY Power Scaling

- Existing 10GBASE-T PHYs optimize power consumed on a link
  - TX DAC power, DSP resolution, taps & cancellation, Analog front-end resolution & noise, coding gain are all tuned for reach
  - See WuParnaby\_01\_0113\_NGBT.pdf for more detail
- Methodology:
  - Determine equivalent reaches mapping NGBASE-T to 10GBASE-T
  - Measure reach-scaled 10GBASE-T power consumption as a % of total power to estimate savings
- Advantage: Includes overhead functions (e.g., PCS) and all blocks in estimate, not just the obvious ones
  - Experience shows this was a substantial oversight in 10GBASE-T estimates
- Disadvantage: Works on a fixed architecture, bandwidth & architecture not optimized for each reach
  - BUT: Bandwidth and architecture shouldn't vary much over 15-20% in IL / reach requirements
  - AND: 10GBASE-T PHYs have been optimized for power vs. reach

#### **10GBASE-T PHY Power Scaling**

- Exact results depend on bandwidth scheme used
  - Assume used bandwidths from 1GHz to 2GHz, using mid-band frequency
- Use "no link" measurement to estimate overhead

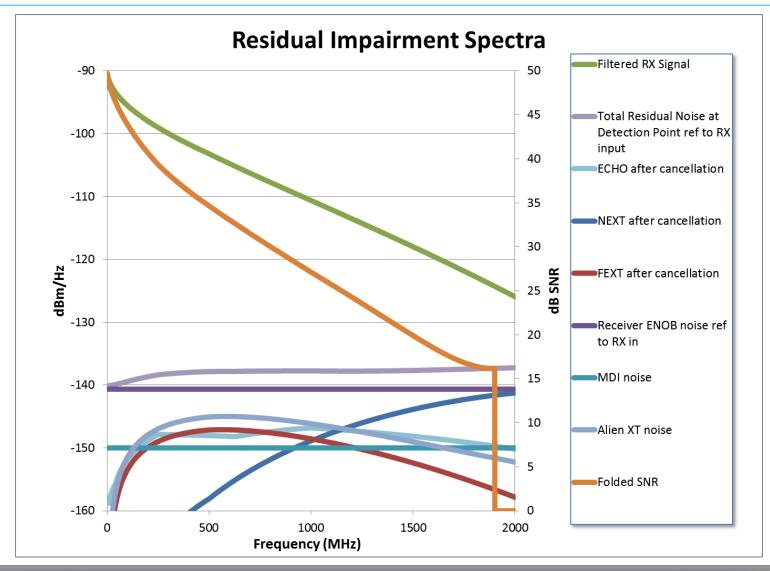

#### Power varies 10-15% over range

Largely driven by big Transmit power back-off step

"Overhead" Power is 25-30%

Estimate is a little low, but shows effect of overhead in deweighting differences

| Mid-band<br>Freq | 25m equiv<br>length | 30m equiv<br>length |
|------------------|---------------------|---------------------|
| 500MHz           | 41.6 meters         | 48.3 meters         |
| 800MHz           | 54.6 meters         | 63.1 meters         |
| 1 GHz            | 62.4 meters         | 72.2 meters         |
| Min/Max          | 41.6 (min)          | 72.2 (max)          |




Source: WuParnaby\_01\_113.\_NGBTpdf

### Power & Reach 3: Detailed PHY Margin Analysis

- Detailed frequency-domain of cancellation & receiver noise requirements to achieve a given implementation margin over Optimum DFE (Salz) SNR
  - Varies bandwidth used, allows optimization of margin, complexity and/or power
  - Assumes code + format performance of 10GBASE-T rel. to capacity
  - Successfully used for tradeoffs in generations of DSL & 10GBASE-T
- Examines 6, 8 or 10dB implementation margin design points
- Channel based on TIA draft 0.5 Category 8 spec, and includes alien crosstalk at specified levels
  - Does not assume shielded cabling has negligible alien near-end or far-end crosstalk (ANEXT and AFEXT)
  - Slightly better than Cat 7a alien far-end crosstalk (AFEXT) levels

### Example – 8dB design point



## A Power Metric (1)

 PHY front-end power (~1/3 to ½ total power) is related to front-end bandwidth and SNR requirements, through a technology "figure of merit"

$$FOM = P / (2^{ENOB} * f_s)$$

- f\_s is 2 x bandwidth, ENOB is the receiver equivalent number of bits (a measure of SNR & SFDR), and P is the power consumed by the front end.
- For a given technology & skill, generally:  $P_{FOM} \sim 2^{ENOB} * f_s$
- This will tend to overestimate the differences in PHY designs:
  - Analog receiver is not the total PHY power
  - Analog receiver front ends tend to vary less with power than indicated when performance is below 55dB SNDR (8.85 bits ENOB) (see WuParnaby\_01\_0113\_NGBT.pdf, Murmann ADC Survey)

## A Power Metric (2)

- Power is compared by examining required cancellation and required front-end power
- Similar bandwidths & cancellations -> similar architecture & complexity
- Plenty of room for implementation margin (6 to 10dB vs. 4 to 6 dB with 10G)
- Estimates of unmodeled overhead power are 25-30% from 10G measurements

Compare total PHY power at reaches, assuming analog receiver power is 1/2 to 3/4 of total PHY power, & other power doesn't vary with reach

## **PHY Power Comparison**

Minimum Analog Receiver power factors (P<sub>FOM</sub>)\*

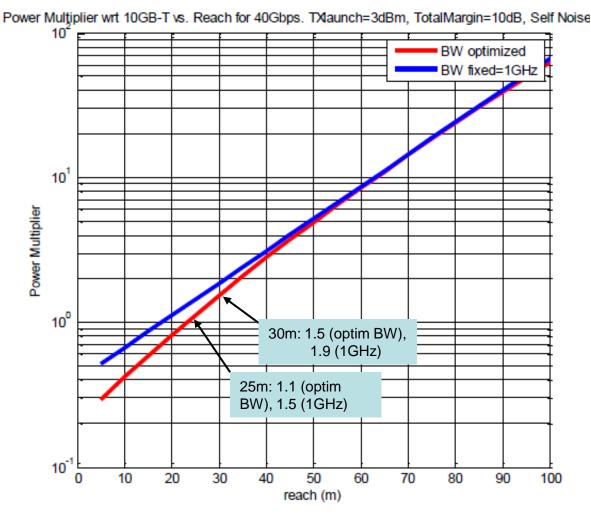
| Channel | 6 dB Design Point | 8 dB Design Point | 10 dB Design Point |
|---------|-------------------|-------------------|--------------------|
| 25m     | 2.05              | 2.70              | 3.57               |
| 30m     | 2.95              | 3.89              | 5.40               |

- Relative total PHY Power Estimates
  - Analog receiver ~  $\frac{1}{2}$  PHY power (typical)

| Channel | 6 dB Design Point | 8 dB Design Point | 10 dB Design Point |
|---------|-------------------|-------------------|--------------------|
| 25m     | 100%              | 100%              | 100%               |
| 30m     | 122%              | 122%              | 126%               |

Analog receiver ~ ¾ PHY power (pessimistic)

| Channel | 6 dB Design Point | 8 dB Design Point | 10 dB Design Point |
|---------|-------------------|-------------------|--------------------|
| 25m     | 100%              | 100%              | 100%               |
| 30m     | 133%              | 133%              | 138%               |


#### Greater power trade in margin design point than in 5m of reach

\* Detailed results in supporting data slides in backup

### Observations

- Viable bandwidths are within 25% range, minimum cancellations are roughly equivalent for 25 vs. 30m
  - Implies negligible difference in DSP power
- Receiver requirements are within 0.5 bits on 6dB margin point, and can stay below 55dB SNDR (>8.85ENOB)
  - Power dependency is probably pessimistic
  - Allows designers trades they did not have in 10GBASE-T
- Alien FEXT specification may be limiting
  - Self-noise limitation means transmit power can probably be adjusted down for power savings
- Pessimistic estimate of PHY power increase for increasing channel from 25 to 30m is 22-33% of total PHY power, including constant overhead
  - Variation caused by design choice from 6 dB implementation margin to 10dB implementation margin is much greater: 41.5-62%

### Reconciliation to Bliss\_1\_0912



#### Power ratios 25m/30m:

- Optimum BW=36%
- 1GHz BW=26%

#### Model Differences:

- Bliss model doesn't include Alien FEXT, which limits lower BW power
- Zimmerman model has a term to include nonsignal processing overhead

YET, Results are in-line

Source: Bliss\_01\_0912.pdf, slide 25

## Summary of Results

- Insertion Loss: comparison of 25m to 30m showed only 16% variation
  - Connectors and ILD dilute the length difference
- Existing PHYs: Power scaled 10GBASE-T indicates < 15% power variation for 40G between 25 & 30m reach
  - 25% overhead in PHY power due to non-reach related effects
- Detailed PHY margin analysis: Multiple design points with 6-10dB implementation margin within <33% total PHY power difference between 25m & 30m design points
  - Bliss\_01\_0912 analysis showed 26 to 36% difference

#### Results suggest errors in estimates are greater than 5 meter differences in reach

### Conclusions

- 25-30m design of NGBASE-T is more like 1000BASE-T (at higher frequency) than it is like 10GBASE-T in signal loss
- Power differences are likely small
  - Measured a variety of ways bound it between
    15-36%
- Recommend decisions based on marketing considerations

## **SUPPORTING DATA**

#### Analog Receiver Parameters Cat8 d0.5spec, Power factors are relative

#### **10dB Margin Point**

|        | 25                          | meters             |                           |                           |                           | 30                          | meters             |                           |                           |                           |
|--------|-----------------------------|--------------------|---------------------------|---------------------------|---------------------------|-----------------------------|--------------------|---------------------------|---------------------------|---------------------------|
| p_BAUD | Min of<br>ADC_FOM<br>_power | Min of<br>p_RXENOB | Min of<br>p_NEXT<br>REDUX | Min of<br>p_ECHO<br>REDUX | Min of<br>p_FEXT<br>REDUX | Min of<br>ADC_FOM_<br>power | Min of<br>p_RXENOB | Min of<br>p_NEXT<br>REDUX | Min of<br>p_ECHO<br>REDUX | Min of<br>p_FEXT<br>REDUX |
| 3200   |                             |                    |                           |                           |                           | 6.55                        | 10                 | 50                        | 100                       | 100                       |
| 3400   |                             |                    |                           |                           |                           | 6.06                        | 9.8                | 50                        | 100                       | 30                        |
| 3600   | 3.69                        | 9                  | 100                       | 100                       | 100                       | 5.59                        | 9.6                | 50                        | 50                        | 30                        |
| 3800   | 3.89                        | 9                  | 50                        | 100                       | 30                        | 5.90                        | 9.6                | 45                        | 50                        | 25                        |
| 4000   | 3.57                        | 8.8                | 50                        | 50                        | 30                        | 5.40                        | 9.4                | 50                        | 50                        | 25                        |

#### 6 dB Margin Point

|        | 25      | meters   |        |        |        | 30       | meters   |        |        |        |
|--------|---------|----------|--------|--------|--------|----------|----------|--------|--------|--------|
|        | Min of  |          | Min of | Min of | Min of | Min of   |          | Min of | Min of | Min of |
|        | ADC_FOM | Min of   | p_NEXT | p_ECHO | p_FEXT | ADC_FOM_ | Min of   | p_NEXT | p_ECHO | p_FEXT |
| p_BAUD | _power  | p_RXENOB | REDUX  | REDUX  | REDUX  | power    | p_RXENOB | REDUX  | REDUX  | REDUX  |
| 2400   | 2.46    | 9        | 45     | 100    | 100    | 3.24     | 9.4      | 40     | 50     | 25     |
| 2800   | 2.50    | 8.8      | 40     | 50     | 25     | 3.29     | 9.2      | 40     | 45     | 25     |
| 3200   | 2.48    | 8.6      | 35     | 45     | 25     | 3.28     | 9        | 40     | 45     | 20     |
| 3400   | 2.30    | 8.4      | 35     | 45     | 20     | 3.03     | 8.8      | 40     | 45     | 20     |
| 3600   | 2.12    | 8.2      | 35     | 40     | 20     | 3.21     | 8.8      | 40     | 45     | 20     |
| 3800   | 2.23    | 8.2      | 35     | 40     | 20     | 2.95     | 8.6      | 40     | 45     | 20     |
| 4000   | 2.05    | 8        | 35     | 40     | 20     | 3.10     | 8.6      | 40     | 45     | 20     |

#### Min ADC Power factors: 25m = 3.57/2.05, 30m = 5.40/2.95,

Greater power tradeoff in picking margin design point than in 5m of reach