Next Generation BASE-T Call For Interest

July 2012, San Diego, CA

CFI Panel Members

- Presenters:
 - Bill Woodruff Broadcom
 - Dave Chalupsky Intel
- Supporters and experts for the Question & Answer session:
 - Dan Dove APM
 - Brad Booth Dell
 - David Koenen HP

Supporters (61 Individuals from 40 Companies)

Rick Rabinovich Dan Dove Venkatesh Nagapudi Kamal Dalmia Jeff Hirschman Yakov Belopolsky Will Bliss Wael Diab Michael Grimwood Heng-Hsin Liao Peter Anslow Hugh Barrass Joel Goergen Mark Nowell George Zimmerman Mabud Choudhury Paul Kolesar Wayne Larsen **Richard Mei** Brad Booth John Dambrosia **Bich Hernandez** Steve O'Hara Geoffrey Thompson Steve Carlson David Koenen Robert Grow Siddharth Sheth Andre Szczepanek Ilango S. Ganga

Alcatel-Lucent APM APM Aquantia Arista Bel Stewart Broadcom Broadcom Broadcom Celestica Ciena Cisco Cisco Cisco CME/Commscope Commscope Commscope Commscope Commscope Dell Dell Dell Fluke Networks GraCaSI **High-Speed Design** HP Independent Inphi Inphi

Intel

Kent Lusted **Richard Melitz** Thananya Baldwin Jerry Pepper Anthony Ng Alan Flatman Michael Bennett Keith Kosanovich David Dwelley LK Bhupathi Sudhakar Gundubogula Yair Darshan Harry Forbes Paul Vanderlaan Sterling A. Vaden Shimon Muller **Ronald Nordin Rick Pimpinella Ronald Cates** Stephen Bates Harshang Pandya Zhu Xing Thuyen Dinh Joseph Chou Valerie Maguire Bruce Tolley Allan Nielsen Nathan Tracy **David Estes** Jeff Lapak

Mandeep Chadha

Intel Intel Ixia Ixia JDSU LAN Technologies LBNL Leviton Linear Tech Marvell Marvell Microsemi Nexans Nexans 000 Oracle Panduit Panduit PLX PMC-Sierra Psiber Data Psiber Data Pulse Realtek Siemon Solarflare TE Connectivity **TE Connectivity** UNH-IOL UNH-IOL Vitesse

IEEE 802.3 Next Generation BASE-T CFI Consensus Building Presentation – July 2012 Plenary

Objectives for the meeting

- To measure the interest in starting a study group for Next Generation BASE-T.
- At this time, we **don't need to**
 - Fully explore the problem
 - Choose any one solution
 - Debate strengths and weaknesses of solutions
 - Create PAR or five criteria
 - Create a standard or specification

Agenda

- Market Opportunity
- Technical Viability
- Q&A
- Straw Polls

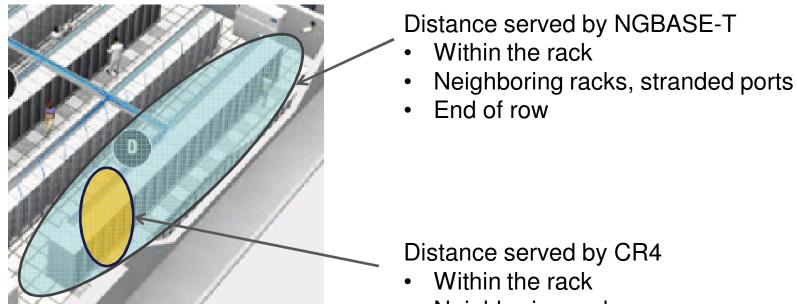
Market Opportunity

Defining the Market Opportunity

- What applications will benefit from a Next Generation (higher speed) BASE-T?
- Why will a twisted pair solution be desired?
- Projection of volumes

Server Ethernet Connections

- Server LAN ports presented here as a primary driver for a Next Gen. BASE-T
- Next Gen. BASE-T Study Group may define objectives based on the requirements of this application
 - Example: reach need much less than 100m...
 - Determine reach based upon application need while balancing power, cost and complexity
 - The needs of other applications may also be considered by the Study Group


Twisted Pair Enables...

Data center switching with flat 2-layer topology

- Server connections to access switch
 - Top of Rack (ToR) switch topology
 - Middle of Row / End of Row topologies
- Access link benefits from Twisted Pair distances
 - Eliminates stranded ports inherent in 42U rack height
 - Not all servers are 1RU, not all racks have 40 servers
 - Not all access switches are at the top of rack
 - Flexibility in physical topology
- Multiple speed generations on compatible infrastructure
 - Allows incremental upgrades, mixed environments
 - Use the 'big pipes" where you need them
 - Structured cabling for flexible moves/adds/changes

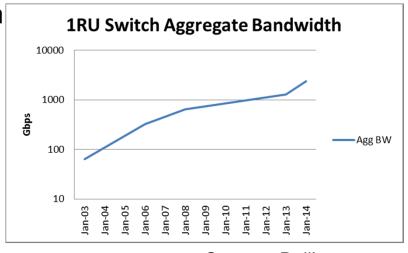
Data Center Topologies

 Next Gen BASE-T well suited to cover Server to Switch connections within the row

Neighboring racks

Page 10

Twisted Pair on Servers


- New LAN technology starts as add-in card, moves to Motherboard
 - 10/100/1000BASE-T LOM is the incumbent
 - 10GbE has been mostly add-in, 10GBASE-T ramping as LOM now
 - Support for 1000BASE-T & 10GBASE-T on same port is a key enabler for LOM
- Add-in Card Port Density
 - Quad port 1000BASE-T NICs very common, shipping more ports than dual port NICs.
 - Quad port 10GbE cards already in the market
 - Reasonable to assume that quad 40GbE will be needed
- Path to quad port 40GbE adapters
 - PCIe Low Profile card the most common add-in form factor
 - Four RJ45's fit on a PCIe Low Profile card
 - Four QSFP+ too large for the PCIe form factor

RJ45 and four-pair cabling provide density and compatibility

Twisted Pair on Switches

48 ports + Uplinks in a 1RU form factor

- 640Gb/s as 48x10Gb/s + 4x40Gb/s is available today
- 2.4Tb/s as 48x40Gb/s + 4x100Gb/s likely available in 2014
- RJ45-size connectors enable 48 ports in 1RU
- Twisted pair enables
 - End of Row, Middle of Row switch
 - Full utilization; no stranded ports
 - Use of structured cabling

Source: Dell'oro

Server Market Perspective

- BASE-T Family is still the highest volume Ethernet port type today
- New technology introduced on add-in cards...
 - But LAN On Motherboard (LOM) drives the highest port volume
- Platform transitions drive new networking requirements
 - 2 to 3 year design cycle for Volume Servers
 - New platforms are the opportunity to design in new LOM technology
- Committing to new LOM technology requires:
 - Low Cost / Reasonable Power
 - High adoption / utilization rate
 - Compatibility with legacy speeds & infrastructure
- 10GbE LOM is growing
 - Led by blade servers with backplane Ethernet
 - Underway now with 10GBASE-T for rack servers
 - LOM-replacement daughter cards providing options during the transition

Page 13

Server Market Trends

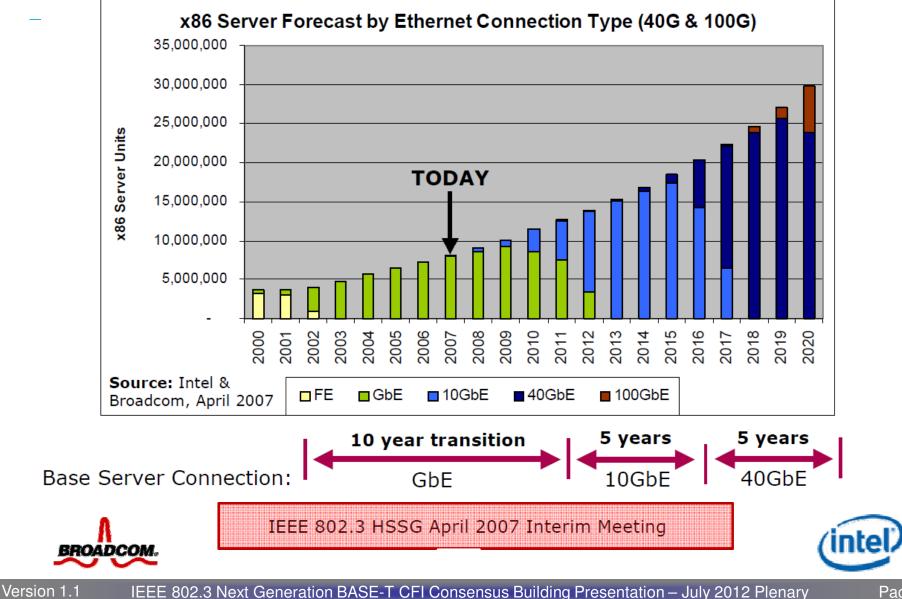
- A rapidly growing & changing environment
- System innovation on all fronts to serve different use models
 - Drive to Exascale this decade for high performance computing
 - 1000x increase over today's fastest computers
 - Density Optimized Servers
 - For Internet Portal Datacenter (IPDC), Cloud Computing, Social Networking
 - MicroServers
 - Applying many, many small processors to the problem.
 - Keeps 1GbE around longer, move to 10GbE drives need for 40GbE uplinks
- Variety of workloads and applications need different balance of compute vs. I/O capability
 - The variety of processor grades is increasing
 - 1GbE through 100GbE ports will co-exist in the market

This is not a homogeneous market!

Simplifying that Complex Story

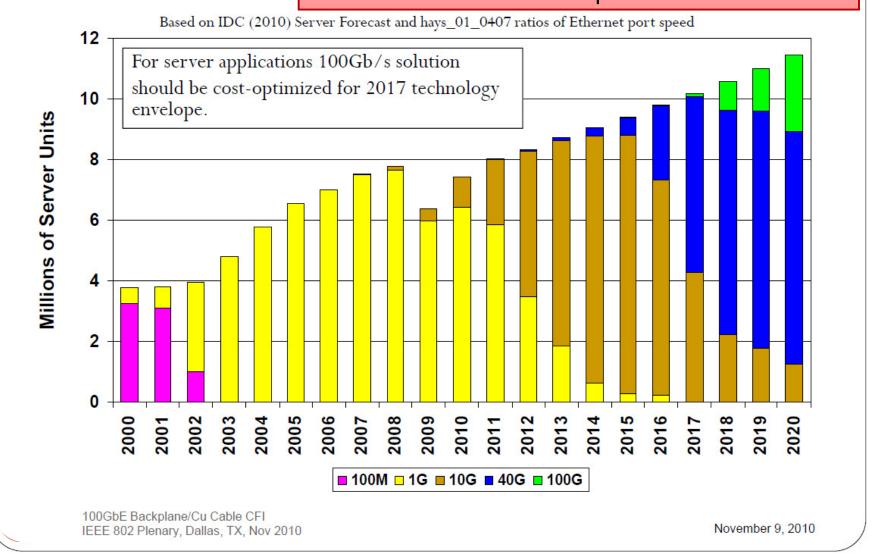
Adoption can be summarized in three categories:

- **Fringe**: Users who demand the most possible bandwidth. The servers that would need this bandwidth would typically be the high end 4 or 8 socket versions.
- Performance: Users who demand more I/O performance due to virtualization or, in some cases, the desire to converge the SAN and LAN networks within the rack
- **Free**: A large portion of server buyers will only implement what is offered as the base configuration. These buyers would choose the "Free" option
 - Kimball Brown, LightCounting, 2011.
 - http://grouper.ieee.org/groups/802/3/ad hoc/bwa/public/jul11/brown 01a 0711.pdf
- Brown did not apply percentages... reasonable estimate:
- Fringe <5%, Performance <20%, Free ~75% of the market

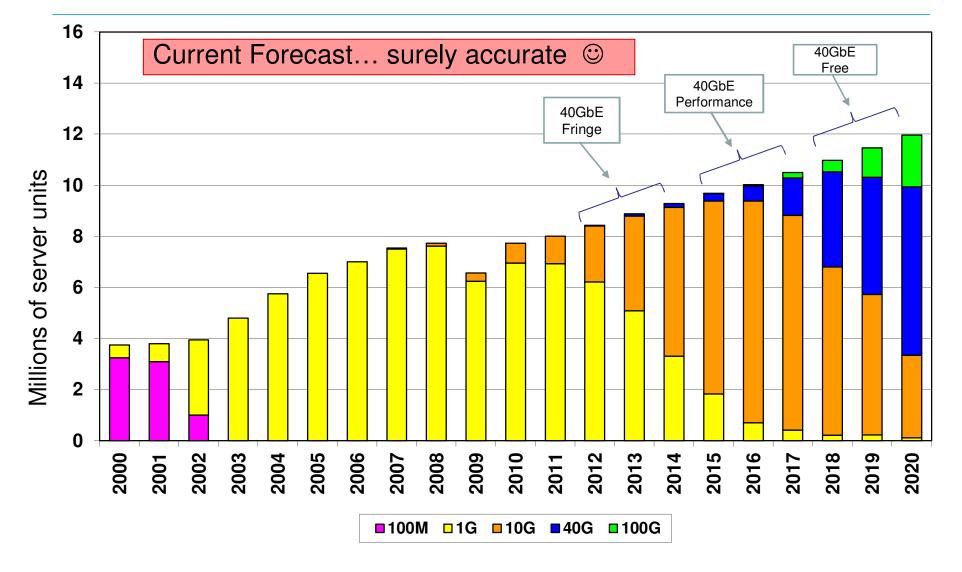

Server Port Forecasts

Past & Present

- x86 Server Ethernet port speed forecasts used in prior CFIs and Study Groups to:
 - Explore market opportunity
 - Determine project timing
 - Note
 - x86 Servers are only part of the server market
 - A lot of "server-like" platforms are in service as network & storage appliances, not counted as servers.
 - They also need a switch connection
 - Result: Overall market opportunity several times higher than just x86 Server


Let's look at prior Server NIC forecasts given in IEEE 802.3 and compare to today...

x86 Server Ethernet Connection Speeds with 40GbE & 100GbE Hays_01_0407.pdf



Page 17

x86 servers by Ethernet connection speed (2010 forecast) From the 100G Cu Backplane & Twinax CFI

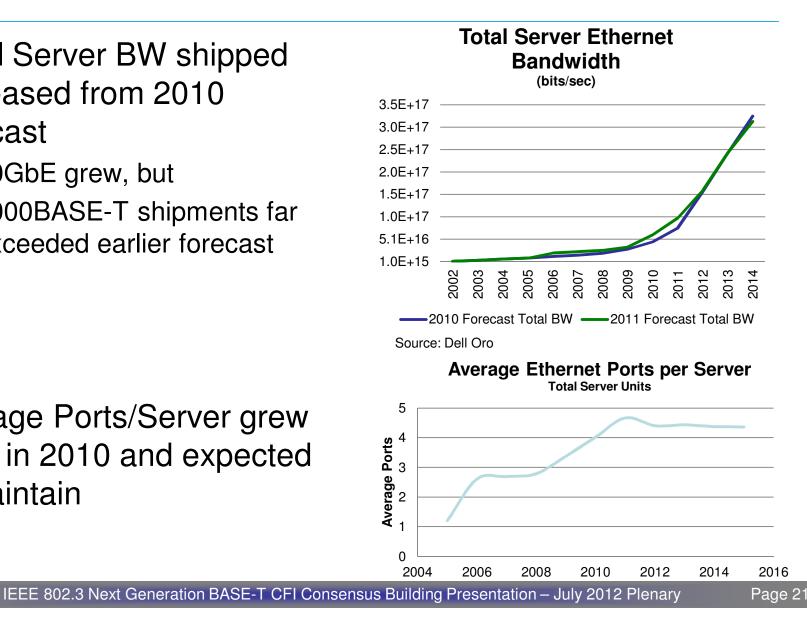
x86 Servers by Ethernet Connection Speed (2012 Forecast) Based on IDC, Dell Oro, Crehan Research and Intel data from 2H'11 – 1Q'12

Version 1.1

Page 19

Observations

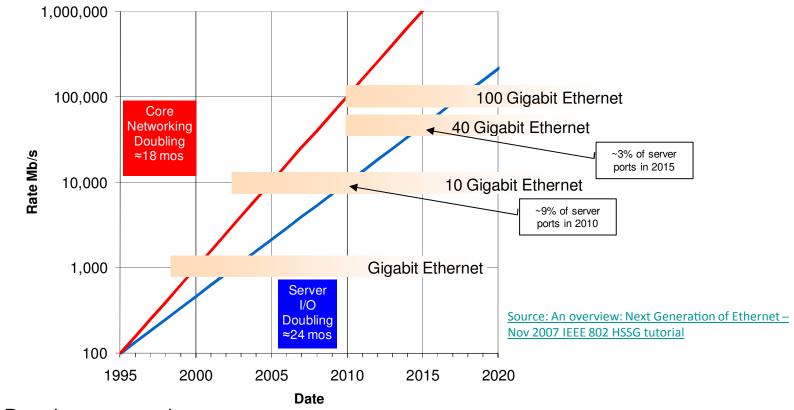
Facts


- Server units growth slowed from 2007 forecast (10% -> 5%)
 - 2009 recession hit, then ramping again
- Ethernet port speed transitions slower by percentage
 - 10GbE ports grew, but so did 1GbE ports

Conjecture on why

- Recession slowed development, qualification of new technology, and capital expenditure
- Server platform launch delays
 - New technology goes with the new platform
- The volume market did not get the cheap 10GBASE-T it was promised
 - 10GBASE-T PHY complexity and channel not appropriately balanced to market needs

More Observations


- Total Server BW shipped increased from 2010 forecast
 - 10GbE grew, but
 - 1000BASE-T shipments far exceeded earlier forecast

Average Ports/Server grew ۲ to >4 in 2010 and expected to maintain

Version 1.1

Server bandwidth trends

Typical Development cycles

- Standards: 2-3+ years
- System and silicon: 2-3+ years
- Typically ~5 years from start of 802.3 project to first products
 - Varies widely based on many factors

Server market has a wide variety of data rate needs.

 Technology can persist for many years after first introduction.

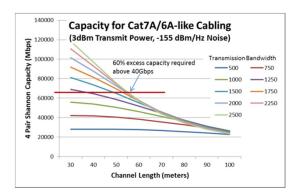
Page 22

Market Need Summary

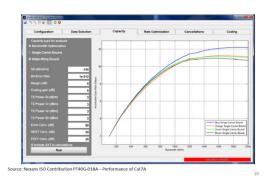
Status

- Total Server bandwidth capability and deployment continues to increase
- 10GBASE-T ramping with LOM
- "Fringe" deployment of 40GbE starting now

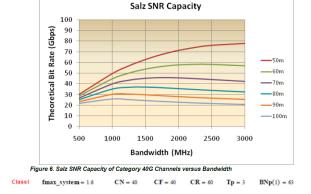
Need

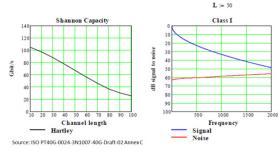

- 10GBASE-T market needs an upgrade path
- Higher speed BASE-T Study Group now will help the Server market move from Fringe to wider adoption

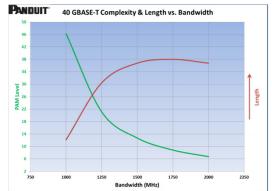
Technical Viability


The Channel

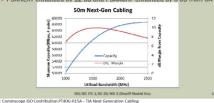
- ISO/IEC and TIA are actively studying the problem
- Both define that sufficient capacity exists for 40GbE over four twisted pairs
- Both await IEEE 802.3's input to define length and to finalize impairment levels
 - IEEE Study group will need to balance objectives related to complexity, power and cost


Body of Work

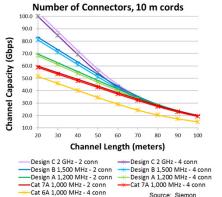


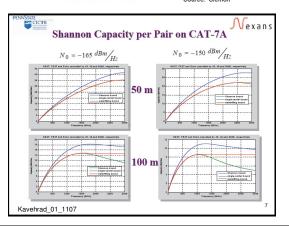

Single-Carrier Data-Rate vs. Frequency

"Sources: Various contributions & published whitepapers: IEEE 802.3 HSSG, TIA TR42.7, ISO/IEC 11801 and whitepapers (2007-2012)"



Analysis of Cabling parameters in relationship to 40G


3dBm Transmit power, -155 dBm/Hz noise floor + AXT

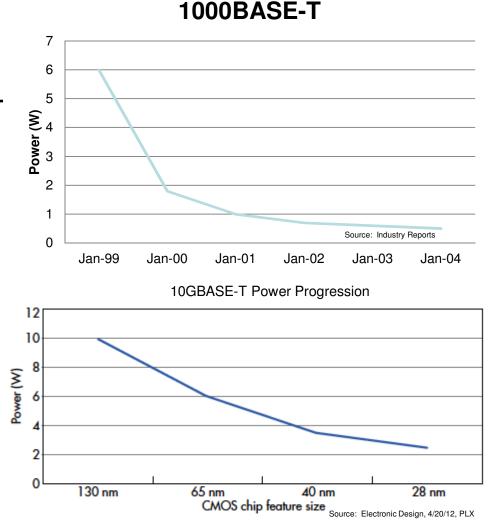

Results show minimal AXT degradation with sufficient capacity and

margin to support 40G PSANEXT enhanced by 12 dB and PSAACRF enhanced by 6 dB from 6A

Channel Capacity versus Length and

Version 1.1 IEEE 802.3 Next Generation BASE-T CFI Consensus Building Presentation – July 2012 Plenary

Page 26


The PHY

- One option is to maintain baseband modulation (like 10GBASE-T)
 - A combination of increased bandwidth and/or increased SNR is required
- Individuals from multiple semiconductor companies concur that NGBASE-T baseband circuits for 40GbE are viable in the time frame of this standard

A Study Group is needed to investigate!

Historic Power Trends

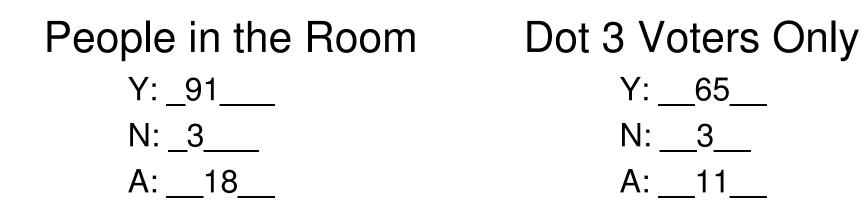
- Power will be a critical factor for NGBASE-T
- History shows that BASE-T solutions have been Moore's Law friendly, showing significant power reduction with advancing silicon process.
- No reason to expect NGBASE-T will not follow that trend.

Attributes

Next Generation BASE-T provides capabilities not otherwise available in the portfolio

	Next Gen BASE-T	40GBASE-CR4
Backwards	Autoneg will be integral,	Breakout can interface with SFP+ or
Compatibility /	compatible with 10GBASE-T	SFP, no Autonegotiation
Autonegotiation	& 1000BASE-T	
Latency	Non-zero, for Study Group	Low
Density in 1RU	2Tb+, 48 ports plus uplinks	1.28Tb+, 32 ports plus uplinks
	(assuming RJ45 size)	(assuming QSFP)
Cabling	4 twisted pair	8 pair, twinax
Cost factors	No active elements, assume	QSFP end point with finite cost and
	twisted pair, widely sourced	assembly complexity, some vendors
		restrict sourcing
Reach	Can do End of Row, 30m or	7m, then can use active cable
	more, defined by Study	
	Group	
Integration	LoM'able, compatible with	CR4 well suited for integration into
	silicon integration	CMOS ASICs

Study Group Topics


- Cable reach
 - Understanding reach vs. power trade-off
- Channel objectives
 - Cable, connectors, magnetics
- Data Rate
- Coding / modulation
- EEE

Questions and Discussion

Next Gen BASE-T CFI Straw Poll

 Should an 802.3 Study Group be formed for

Next Generation BASE-T?

Straw Polls

- _112_ Number of people in the room
- _51_ Individuals who would attend and contribute to a
 Next Generation BASE-T Study Group
- _29_ Companies that support participation in a
 Next Generation BASE-T Study Group

Thank you!