### NGBASE-T, Reach, Density, Power & Throughput Relationships

Harry Forbes CTO



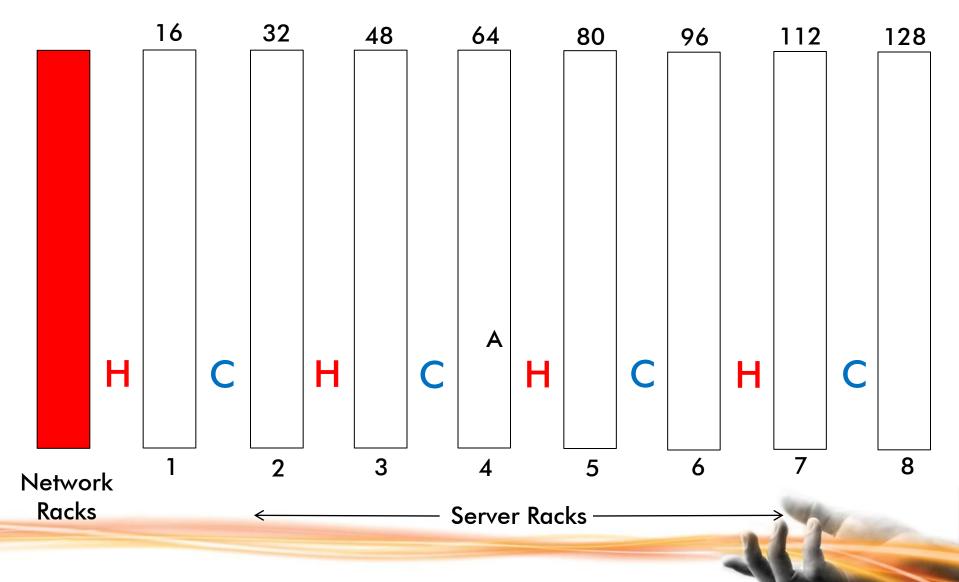


- Examine the relationship between cable reach, network port density, PHY power & throughput
- How does this match end user customer needs & expectations?
- Provide data for discussion and future work

#### List of Assumptions

## **M**exans

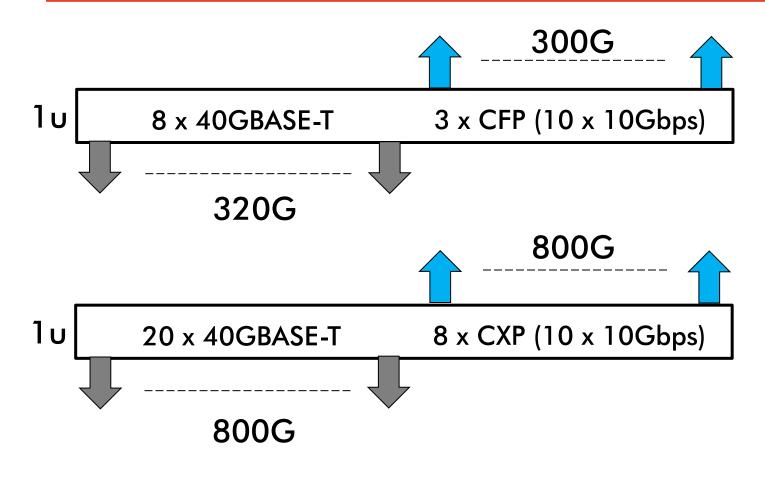
- 40G data rate
- ♦ 3 x BASE-T network ports per server (2 x LOM + 1 Mgt)
- 100G fibre optic uplinks
- Oversubscription ratio approaching parity 1:1
- Continuous trend to achieve maximum population of devices within network and server racks
- Forced air cooling will predominate for the foreseeable future
- Network switches & servers are 1U high


#### Data Centre Model

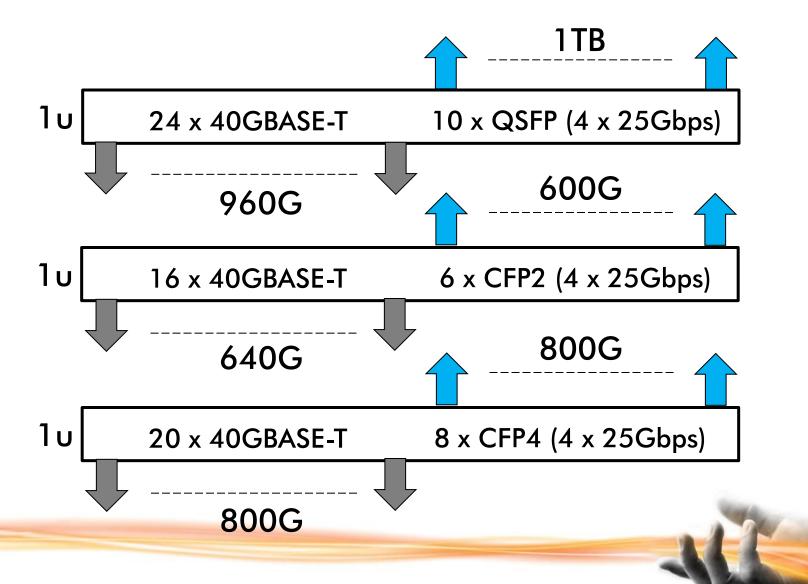
## Mexans

- Based upon worst case conditions that will determine longest reach required
- Driven by density of switch ports per rack
- In turn driven by cooling capacity
- Forced air cooling at maximum of 8kW per equipment rack
- Based upon 800mm wide equipment racks
- Longest reach model based upon edge of computer room network switches

### Mexans


#### 9 Equipment Rows 16 Racks per Row Cable Routing Follows TIA 942



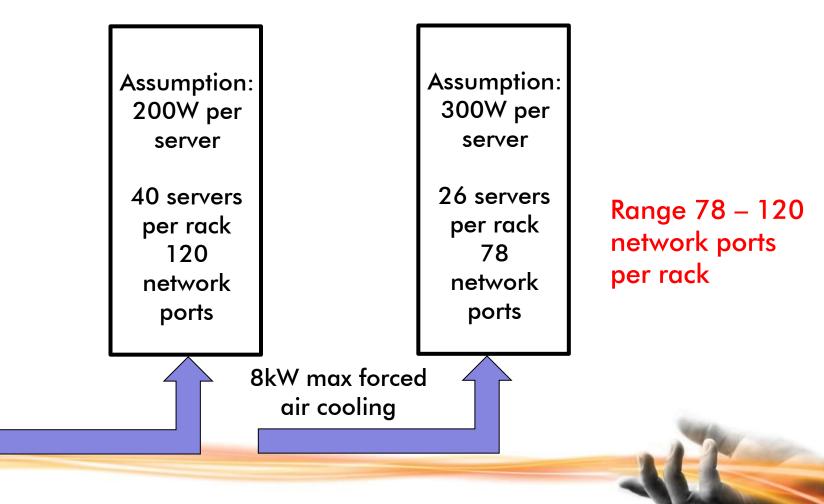

#### Number of Switches at 8kW Max Cooling per Equipment Rack

| Power/sw         | 300W | 350W | 400W |
|------------------|------|------|------|
| <b>#Switches</b> | 26   | 22   | 20   |





### Mexans




#### Network Switch Rack Density Options



|                                        | Ne                  | etworl | < Equipme                     | nt Rack | S<br>#Switches                                                          | 16 Port | 20 Port | 24 Port |
|----------------------------------------|---------------------|--------|-------------------------------|---------|-------------------------------------------------------------------------|---------|---------|---------|
| Patch_                                 |                     |        |                               | ] [     | 26                                                                      | 416     | 520     | 624     |
| Panels                                 |                     |        |                               | 22      | 352                                                                     | 440     | 528     |         |
|                                        |                     |        |                               |         | 20                                                                      | 320     | 400     | 480     |
| Switches 26 x 16<br>22 x 16<br>20 x 16 |                     |        | 26 x 20<br>22 x 20<br>20 x 20 |         | 26 x 24<br>22 x 24<br>20 x 24<br>Range 320 – 6<br>network ports<br>rack |         |         |         |
|                                        | 16 Port<br>Switches |        | 20 Port<br>Switches           |         | 24 Port<br>Switches                                                     |         |         |         |
|                                        |                     |        |                               |         |                                                                         | -       |         |         |

# Server Network Port Density Mexans 2 x 40GBASE-T ports + 1 x Mgt Console Port





#### Number of Server Racks/ Switch Port Density/Server Power

|                 |      | Switch Ports/Rack |     |
|-----------------|------|-------------------|-----|
|                 |      | 320               | 624 |
| Server<br>Power | 200W | 42                | 83  |
|                 | 300W | 65                | 128 |

Cable Reach 24m – 35m 2 connector model 3/4 connector model adds minimum 10m reach



- ♦ 24m = 42 racks 200W per server = 1,680 servers
- ♦ 35m = 128 racks 300W per server = 3,328 servers
- Very large Scale Data Centres : 2000+ server count
- 35m reach captures 100% of market with room for expansion

### ∭exans

#### Conclusions

- Market trending towards high density server and switch racks
  - Co-location companies designing for greater server space to rent out
  - Driving energy efficiency colos charging for energy
  - Requires greater flexibility with placement of devices
  - Requires high density switches
- Increase in switch port density enables connection to greater number of servers
- Large increase in server connections for incremental increase in reach
- Trade off between short reach for less PHY power consumption and longer reach to support energy efficiency
- Oversubscription ratio trending towards 1:1 as east west traffic increases reduces switch port downlink density