Thread Links Date Links
Thread Prev Thread Next Thread Index Date Prev Date Next Date Index

Re: [802.3_NGEPON] 10/01/15 NG-EPON Consensus building meeting notes



Duane, how many possible combinations should we have?

 

This is what the current scope allows:

 

1)      25/10

2)      25/25

3)      50/10

4)      50/25

5)      50/50

6)      100/10

7)      100/25

8)      100/50

9)      100/100

 

Is this not enough?

 

By analogy with 10G-EPON PAR, we used “symmetric and/or asymmetric” to justify reuse of existing 10G upstream transmission (for asymmetric mode)

Bu explicitly mentioning 50G downstream, we allow 50G downstream.

 

There was a conscious decision to exclude 75G, because it is too close to 100 and no self-respecting engineer (i.e., with a qualifying degree of OCD)  will build a 3-channel solution instead of 4-channel one.

 

Glen

 

From: Duane Remein [mailto:Duane.Remein@xxxxxxxxxx]
Sent: Friday, October 02, 2015 4:18 PM
To: Glen Kramer; STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Cc: Duane Remein
Subject: RE: 10/01/15 NG-EPON Consensus building meeting notes

 

All,

I completely agree that we don’t want to paint ourselves into a corner with the PAR. That said I think the proposed change to the PAR does exactly that – it allows for 25 Gb/s, 50 Gb/s and 100 Gb/s MAC data rates. The implaication here is that we don’t do, for example 75 Gb/s, or any other possible combination of 10 Gb/s & 25 Gb/s rates.

I like the thrust of Eugene’s suggestion; specifically state we will allow rates between 25 Gb/s & 100 Gb/s in increments of 10 Gb/s & 25 Gb/s. This really does state well what we want to be in scope.

Best Regards,

Duane

 

FutureWei Technologies Inc.

duane.remein@xxxxxxxxxx

Director, Access R&D

919 418 4741

Raleigh, NC

 

From: Glen Kramer [mailto:gkramer@xxxxxxxxxxxx]
Sent: Friday, October 02, 2015 6:56 PM
To: STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: [802.3_NGEPON] FW: 10/01/15 NG-EPON Consensus building meeting notes

 

Frank,

 

See below, please.

 

Glen

 

From: frank effenberger [mailto:frank.effenberger@xxxxxxxxxx]
Sent: Friday, October 02, 2015 11:50 AM
To: Glen Kramer; STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: RE: 10/01/15 NG-EPON Consensus building meeting notes

 

Glen,

I know how 10GEPON works.  I even got an award for it.  (And what luxury - a whole piece of 8.5x11 paper, with color printing, even!) 

GK: Sorry, that’s all IEEE could afford. If you expect a more lavish award, you may consider participating in ITU-T J

 

Let’s not forget that everything in the standard is only a reference implementation.  What you actually build is up to you, as long as it behaves as it should.  This is particularly true for EPON. 

So, for the concern on the “whole data path running at 100G” – come on… that’s not how it would be done. 

 

Now, what’s wrong with saying that there is a 100G MAC, that then only uses a subset of its capability?  In our view, that’s how you’d build any of these sub-rated things.

GK: True, with Tx throttling above the MAC and Rx gap filling below the MAC, a 100G MAC can support any effective data rate, even 1Mb/s, if you wish. But, given that the PAR scope defines a limit on what can be standardized, how would you justify having such reduced mode in the draft, without it being mentioned in the scope? It was discussed on the call which you missed. We can either take a risk at the PAR approval time by adding an intermediate speed, or we may take a risk at Sponsor Ballot time (a risk much higher, in my opinion) if we put such intermediate rate in the draft without the PAR scope “allowing” it.

 

I think there is a false argument here, that somehow people are going to build a dedicated 50G EPON.   Do you think the industry is going to do such incremental advances?  I don’t think so, particularly not for the silicon.    

GK: Who knows what the future holds? To go from 25G to 100G is a big step. I don’t exclude that intermediate MAC speeds will be standardized and intermediate silicon speeds will be built.

Requiring the silicon to support 100G from day one will do nothing except pushing silicon availability several years out.

 

Another possible approach is to use existing 40G MAC with 2x25G PHY. This will nicely take care of all FEC and other EPON overheads, allowing true 40G data rates. But even with this approach, an operation at reduced PHY capacity should be supported by PAR scope, I think.

 

We expect that the 25G single channel technology will be developed, and that a way to combine them into higher speeds will be developed.

The 100G MAC is the large enough bucket that can accommodate 4 25’s, and four is a proven modularity.

And so, anybody who is interested in building any of these sub-rated systems would end up using 100Gb/s switch-ports. 

 

I can say that some of this may depend on exactly how the channel combining is done.  Some people may be thinking of “hard bonding” – that is, the designer decides how many channels will be tied together, and once they are combined, any ONU that wants to use those channels must listen to all of them.  This is how 100G Ethernet works, and that is fine for point to point.  They become an indivisible block, and that (maybe) motivates the thinking about a 50G MAC.  I think this is a very poor design choice for PON.  The whole point of PON is to allow bandwidth flexibility.  It is much better to have a scheme of “soft bonding” – that is, the operator decides which ONUs work on which set of channels, and it can change over time.  In addition, it is likely that there can be 1, 2, and 4 channel ONUs, all sharing the available channels in an efficient manner.  If one “hard bonds” 2 channels together, then the single channel ONUs can’t listen to those channels – you’d have to have a single channel to take care of them.  And then there is no space for the 4 channel bonded group.  We would quickly paint ourselves into a corner. 

GK: Agree, a protocol should be flexible to not waste network resources. Even more, sometimes the OLT may decide to communicate with an ONU on fewer wavelength than the ONU can support.  

 

So, back to the scope:  If the scope is a maximum, then 100G is a fine maximum. If we do the right thing regarding how the 100G MAC gets reduced, all the desired use cases will be supported.  And that is what really matters.      

 

Sincerely,

Frank E

 

 

From: Glen Kramer [mailto:gkramer@xxxxxxxxxxxx]
Sent: Friday, October 02, 2015 1:51 PM
To: frank effenberger; STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: RE: 10/01/15 NG-EPON Consensus building meeting notes

 

Frank,

 

10G-EPON uses exactly the same MAC as is used in 10G point-to-point. This MAC runs at exactly 10Gb/s, no matter what the actual data throughput. The PHY adds an overhead due to FEC, so the effective throughput is lower. The data is throttled above MAC to make sure it does not overrun PHY capacity. But the MAC spits bits (idles if there is no data) out at exactly 10Gb/s. In other words, the data path in 10G-EPON runs at 10Gb/s.

 

Since the PAR scope is the upper bound and what the project is allowed to cover (as David clarified on the call), the existing scope limits us to only 25G and 100G MACs and nothing else.

If we don’t add 50G MAC, then we will have the MAC and the entire data path running at either 25Gb/s or 100Gb/s, no matter how many wavelengths are activated. This is what we try to avoid. We need to allow another generation between 25G and 100G.

 

Glen

 

From: frank effenberger [mailto:frank.effenberger@xxxxxxxxxx]
Sent: Friday, October 02, 2015 10:27 AM
To: STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: [802.3_NGEPON] FW: 10/01/15 NG-EPON Consensus building meeting notes

 

It bounced for some reason…

 

From: frank effenberger
Sent: Friday, October 02, 2015 1:18 PM
To: 'Curtis Knittle'; STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: RE: 10/01/15 NG-EPON Consensus building meeting notes

 

Sorry we missed the call. 

 

I would note that explicitly adding 50G at this time invites “no” votes right now, as there are no other 50G MAC projects. 

The existing idea was that the 100G PHY would be made in such a way as to allow reduced rate (i.e., fewer channel) operation.  Why does this not suffice? 

Also, such degradation would not require seeking special permission from the parent group.  As a case in point, 10GEPON actually is a 8.7GEPON.  We chose to do FEC sub-rating.

So the actual MAC rate is lower than normal, using the forcing of larger inter-packet gaps.  Again, why do we think the reduce rate 100G would be any different? 

 

Thanks,

Frank E.

 

 

From: Curtis Knittle [mailto:C.Knittle@xxxxxxxxxxxxx]
Sent: Friday, October 02, 2015 12:20 PM
To: STDS-802-3-NGEPON@xxxxxxxxxxxxxxxxx
Subject: [802.3_NGEPON] 10/01/15 NG-EPON Consensus building meeting notes

 

Folks,

Please let me know if I need to add to or revise the notes below. Note, Marek’s contribution for the meeting is attached.

 

Curtis

 

 

 

10/01/2015

IEEE 802.3 NG-EPON Study Group Work Items and Socialization

 

·         Review of Guidelines for IEEE-SA meetings.

o   https://development.standards.ieee.org/myproject/Public/mytools/mob/preparslides.pdf

o   Has anyone not seen these Guidelines? Everyone has seen the guidelines

·         November meeting

o   Study Group meeting times (tentative but likely):

§  Tuesday, 11/10, 1 pm – 5:30 pm

§  Wednesday, 11/11, 9 am – 5:30 pm

§  Thursday, 11/12, 9:00 am – 12:00 pm

·         CSD/PAR/Objectives timeline

cid:image001.png@01D0FD46.CC03E610

·         Deliverables for Plenary

o   Comments due from 802 by 6:30 pm 11/10. Comments resolved by 6:30 pm 11/11

·         Critical/Baseline decisions (reference Marek’s presentation attached to email)

o   Pros and cons of channel bonding at different sublayers – below MII, above MII, above MAC

o   Terminology

o   Fiber data (see slide 8)

o   Channel model (see slide 8)

o   See Marek’s presentation for additional key baseline decisions

·         Leads for areas

o   Group was asked to consider high level areas for which a lead would be identified to drive the contributions and decisions for that area. Examples are architecture, features, baseline, etc.

o   This would be different from creating ad hoc committees. While less formal than ad hocs, there would be improved organization with leads identified

o   Task force members can contribute wherever they want – there are no restrictions.

·         Miscellaneous

o   Scope of PAR: might need to add something to the scope to allow for rates between 25G and 100G, or something about degraded rates. Exceeding the scope by doing 50G, for example, when we’ve only mentioned 25G and 100G, could bring some “no” votes because it doesn’t match the scope.

§  Two augmentations to the scope: intermediate MAC rates, “symmetric and/or asymmetric operation” (like in .3av)

o   Risk: if we don’t change the scope, then we risk not getting approval in 2 years when we do sponsor ballot. If we do change the PAR, people might think it’s too big of a change and vote no. The commenting process is used to make changes to the PAR all the time. We need to make sure we have a good story regarding these changes.

o   Group initially considered scope as a minimum, which allowed operation at 50 Gbps, but it turns out this is not the case. The scope places upper bounds on the project.

o   Proposed scope change: The scope of this project is to amend IEEE Std 802.3 to add physical layer specifications and management parameters for symmetric and/or asymmetric operation at 25 Gb/s, 50 Gb/s, and 100 Gb/s MAC data rates on point-to-multipoint passive optical networks.

 

 

 

Name

Employer/Affiliation

Alan Brown

CommScope

Bill Powell

ALU

Bruce Chow

Corning

Barry Colella

Source Photonics

Curtis Knittle

CableLabs

David Law

HP

Derrick Cassidy

BT

Doug Jones

Comcast

Duane Remein

Huawei

Ed Harstead

ALU

Fernando Villarruel

Cisco

Francois Menard

Aeponyx

Glen Kramer

Broadcom

Hesham ElBakoury

Huawei

Jeff Finkelstein

Cox

Jorge Salinger

Comcast

Kevin Bourg

Corning

Kevin Noll

TWC

Marek Hajduczenia

Bright House Networks

Mark Laubach

Broadcom

Michael Peters

Sumitomo

Mike Emmendorfer

Arris

Moiz Lokhandwala

TWC

Phil Miguelez

Comcast

Philip Oakley

Virgin Media

Ryan Hirth

Broadcom

Ryan Tucker

Charter

Saif Rahman

Comcast

 

 

 

 

 

 

 

Curtis Knittle

Director, Optical Technologies

 

CableLabs

858 Coal Creek Circle

Louisville, CO 80027

Office: 303-661-3851

Mobile: 303-589-6869

Email: c.knittle@xxxxxxxxxxxxx