Link Model Spreadsheet for Optical PAM-4 Channels

J. M. Castro, R. Pimpinella, B. Lane, B. Kose Y. Huang and A. Novick

Next-generation 200 \& 400 Gb/s MMF PHYs Rosemont, March. 2018

- Background
- Objectives
- New Models for PAM-N,
- ISI and Jitter penalties for multilevel signal
- Eye skew penalties as a Deterministic Jitter
- Noise models
- RIN, MPN, and other penalties for multi-level signals
- Link Model Spreadsheets
- Current spreadsheet structure and limitation
- VBA functions to support more complex models
- Proposed link model spreadsheet for FC-PI-7 and 802.3 cm PAM4 applications
- Proof of concept
- Discussion and Summary

Background

PANDUIT

- Link model spreadsheets have been used in IEEE and Fibre Channel as illustrative examples of optical links reaches and power budgets.
- Recent IEEE and Fibre Channel PMDs have not adopted link model spreadsheets
- PI-7 64GFC-SW-SW, IEEE 802.3cd ...
- Implementation equalized PMA-4 eyes and penalties in a spreadsheet, i.e, Excel spreadsheet, could be challenging.
- Simplicity of script based programs such as Python or Matlab are difficult to translate to a spreadsheet.
- Slow computation and graphic response of spreadsheet.

Background

PANDUIT

- Previous work for 1Gbps and 10Gbps using NRZ link models
- Del Hanson, David Cunningham, Piers Dawe and David Dolfi (for 10G)
- Prior works for equalized channels :
- D. Cunningham proposed a 3-tap equalizer for PI-6 (12-044v1, 12-123v0)
- However, required several sheets (one per link length) and valid only for NRZ
- PAM-4 power budget penalties require more sophisticated equations than NRZ
- Equalization taps need to be efficiently computed for each length in one sheet
- In Fibre Channel, PAM-4 has been modeled using additional software packages
- For Python languages $16-013 \mathrm{v0}, 16-012 \mathrm{vo}$
- For Matlab 15-263v0
- An Excel VBA was proposed in T11-2016-065v0
- Fully implemented PI-6P (32GFC NRZ)

Objective

- Discuss the benefits of having a link model spreadsheet as a guidance during the standardization process of new PMDs
- TDECQ suitable for production test, however,
- Based on assumptions that might not represent actual channels
- Proxy for PDFs, Bessel-Thomson filter representing MMF and receiver,
- Thresholds from OMAs (sensitive to small variations).
- Sampling points and effects of eye skew
- A link model spreadsheet can be easy to use and share
- Real-time results enable collaboration among participants
- Enable relative comparison of PMD solutions
- Comparing penalties due to data rate differences, wavelengths (Pimpinella_NGMMF_02_0118), reaches
- Compare additional power budget penalties between MMF PMD from IEEE 802.3cd vs Fibre ChannelPI-7
- Compare penalties between modulation formats (PAM vs NRZ)

New Penalties for Optical PAM-4

PANDUIT

- Modeling based on multi-mode rate equation is accurate to predict VCSEL performance.
- However, it is computational demanding and impractical for a spread-sheet link model.
- Gaussian approximation for multi-level channels use analytical expressions
- They could be easily implemented in link models.
- However, Gaussian models need additional consideration to represent real channels.

Tilt

Gaussian Approx

The Gaussian Channel

PANDUIT

- The response to a rectangular pulse of duration equal to T_{p}, is given by,

$$
h_{e}\left(t, T_{r}, T_{p}\right)=0.5\left[\operatorname{erf}\left(k \frac{\left[2 t+T_{p}\right]}{T_{r}}\right)+\operatorname{erf}\left(k \frac{\left[-2 t+T_{p}\right]}{T_{r}}\right)\right]
$$

where T_{p} is the symbol period, and T_{r} is the 10-90\% overall system rise time which comprises the laser, fiber, and the photo-receiver response.

- For PAM-M where $\mathrm{M}=4$, the worst case bottom eye represented by E_{L}, shows the combined effect of ISI and Jitter degradation.

$$
E_{L}\left(J, T_{r}, T_{p}\right)=h_{e}\left(0.5 J T_{p}, T_{r}, T_{p}\right)-(M-1)\left[1-h_{e}\left(0.5 J T_{p}, T_{r}, T_{p}\right)\right]
$$

Power Penalty

$$
P_{I S I+J}\left(J, T_{r}, T_{p}\right)=-10 \log _{10}\left(E_{L}\left(J, T_{r}, T_{p}\right)\right)
$$

ISI-Jitter Penalties for equalization of PAM-4: Equalizer example with 3 tap

- The response for an equalized channel is given by,

$$
h_{f}\left(t, T_{r}, T_{p}\right)=c_{0} h_{e}\left(t, T_{r}, T_{p}\right)+c_{1} h_{e}\left(t-T_{p}, T_{r}, T_{p}\right)+c_{-1} h_{e}\left(t+T_{p}, T_{r}, T_{p}\right)
$$

- For simplicity, only 3 taps are shown here

$$
c_{0}=1 ; \quad c_{1}=c_{-1}=\frac{h_{1}}{h_{o}}\left(\frac{2 h_{1}{ }^{2}-h_{o}{ }^{2}+\sigma^{2}}{h_{0}{ }^{2}-h_{1}{ }^{2}+\sigma^{2}}\right) ;
$$

- where, $h_{0}=h_{e}\left(0, T_{r} T_{P A M}\right)$ and $h_{1}=h_{e}\left(T_{P A M}, T_{r} T_{P A M}\right)$.

The worst eye height is given by,

$$
\begin{aligned}
E_{L}^{t=0}\left(T_{r}, T_{p}\right) & =W_{1}\left(0, T_{r}, T_{p}\right)-W_{0}\left(0, T_{r}, T_{p}\right) \\
& \left.\approx h_{f}\left(0, T_{r}, T_{p}\right)+2(M-1)\left[h_{f}\left(2 T_{p}, T_{r}, T_{p}\right)-h_{f}\left(T_{p}, T_{r}, T_{p}\right)\right]\right)
\end{aligned}
$$

The worst eye width is given by L sequences:

$$
E_{E q}\left(J, T_{r}, T_{p}\right) \approx E_{e q}^{t=0}\left(T_{r}, T_{p}\right) \max \left(2 \frac{L\left(\left|0.5 J T_{p}\right|, T_{r}, T_{p}\right)}{L\left(0, T_{r}, T_{p}\right)}-1,0\right)
$$

Power Penalty

$$
P_{I S I}+J=10 \log 10(E E q(J, T r, T p))
$$

Eye skew as deterministic jitter

- Eye skew penalties can be incorporated as an additional of deterministic jitter.

$$
P_{I S I_{+} J}=10 \log 10\left(E q\left(J+\left(\frac{\Delta T}{T_{p}}\right), T r, T p\right)\right.
$$

Eye skew dependence on transmitted symbol

$$
+020202
$$

+ 010101

ΔT

Noise Penalties (work in progress)

- Rescale RIN and signal dependent noise due to multilevel symbols
- Higher level signals have more penalties

$$
\Delta N o=10 \log _{10}\left(\frac{s_{W}+\sqrt{s_{W}+s_{R N-O O K}}}{\sqrt{F_{W} s_{W}+\left(\frac{M-2}{M-1}\right)^{2} F_{R I N} s_{R N-O O K}}+\sqrt{F_{W} s_{W}+F_{R I N} s_{R N-O O K}}}\right)
$$

Link Model Spreadsheet

Limitations of Link Model Spreadsheet

PaNIUIT

- A significant portion of the worksheet is used for intermediary computations

Modified Spreadsheet

- VBA code example for:
- Handling all power budget penalties and equalization up to 5 taps.
- Fully implemented in VBA for OOK or PAM4
- Dispersion Module and Equalizer module for 3 taps shown as an example.

```
Sub Dispersion_Module()
L = Reach
D1 = 0.25 * D_slope * lambda_c * (1 - (lambda_z / lambda_c) ^ 4)
D2 = 0.7 * D_slope * Spectral Width
D = (D1 ^ 2 + D2 ^ 2) ^ 0.5 'ps/nm km
BWcd = 0.187 * 10 ^ 6 / (L * Spectral_Width * D)
Ts = Ts_20_80 * 1.518 '%ps converted to 10%-90%
BWmc = \overline{Sqre(1 / ((1 / BWme * L) ^ 2 + (1 / BWcd) ^ 2))}
Tr = c2 * 10 ^ 3 / BWrec
Te = (Ts ^ 2 + 10 ^ 6 * (c1 / BWmc) ^ 2) ^ 0.5
TC = (Te ^ 2 + Tr ^ 2) ^ 0.5
End Sub
Sub Compute_Taps()
b1 = 0: b2 = 0
arg = 2.563 / 2 / (2 ^ 0.5) * (Teff / Tc)
If EQ flag = 1 Then
    h\overline{0}=(0.5 * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
    h1 = (0.5 * (WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf(arg * 1)))
    b1 = h1 / h0 * (2 * h1 ^ 2 - h0 ^ 2) / (h0 ^ 2 - h1 ^ 2)
    b2 = 0
```

End
If

Modified Spreadsheet

- VBA code example for 5 tap equalizer:
- Handles all power budget penalties and equalization up to 5 taps.
- Fully implemented in VBA
'\%\%\%\%\% Compute Équa」ızers
Sub Compute_Taps ()
$\mathrm{b} 1=0: \mathrm{b} 2=0$
$\arg =2.563 / 2 /\left(2^{\wedge} 0.5\right) *($ Teff $/ \mathrm{Tc})$
If EQ_flag = 1 Then
h0 $=(0.5$ * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
h1 $=(0.5$ * (WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf(arg * 1)))
b1 = h1 / h0 * (2 * h1 ^ 2-h0 ^ 2) / (h0 ^ 2-h1 ^ 2)
b2 $=0$
End If
$1 \% \% \% \% \% \% \% 5$ taps
If EQ_flag = 2 Then
h $\overline{0}=(0.5$ * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
$h 1=(0.5 *($ WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf (arg * 1)))
h2 $=(0.5 *($ WorksheetFunction.Erf(arg * (5)) - WorksheetFunction.Erf(arg * 3)))

End If
End Sub

Modified Spreadsheet

PANDUIT

- No equations in the results cells. VBA module updates results when an input is changed

Two new Inputs for Equalization Type and Signal Levels

Most of the results. Each cell contains a value not a function

Mostly Input parameters. Any change triggers a recalculation of the results

Examples

PANDUIT

－To be shown during presentation

Examples

PANDUIT

- To be shown during presentation

Summary and Conclusions

- Discussed the benefits of having a link model spreadsheet as a guidance during the standardization process of new PMDs
- Sharing and collaboration
- Real-time results (click and see)
- Enable relative comparison of PMD solutions
- Comparing allowable reaches and penalties due to:
- data rates, wavelengths, BER, modulation formats ..
- Develop models for equalized PAM-4 channels
- Presented models for ISI, Jitter and Power dependent noise
- New functions for Multi-level signals (VBA or dlls)
- Still more work to do...
- Invite collaboration to develop a shared model

QUESTIONS

BACKUP

TDECQ modeling presented in fiber channel in 2017

Sensitivity to thresholds...

Eye Statistics

