Link Model Spreadsheet for Optical PAM-4 Channels

J. M. Castro, R. Pimpinella, B. Lane, B. Kose Y. Huang and A. Novick

Next-generation 200 & 400 Gb/s MMF PHYs Rosemont, March. 2018

infrastructure for a connected world

Outline

Background

Backeround & Consecures

- Objectives
- New Models for PAM-N,
 - ISI and Jitter penalties for multilevel signal
 - Eye skew penalties as a Deterministic Jitter
 - Noise models
 - RIN, MPN, and other penalties for multi-level signals
- Link Model Spreadsheets
 - Current spreadsheet structure and limitation
 - VBA functions to support more complex models
 - Proposed link model spreadsheet for FC-PI-7 and 802.3cm PAM4 applications
 - Proof of concept
- Discussion and Summary

Background

- Link model spreadsheets have been used in IEEE and Fibre Channel as illustrative examples of optical links reaches and power budgets.
- Recent IEEE and Fibre Channel PMDs have not adopted link model spreadsheets
 - PI-7 64GFC-SW-SW, IEEE 802.3cd ...
- Implementation equalized PMA-4 eyes and penalties in a spreadsheet, i.e, Excel spreadsheet, could be challenging.
 - Simplicity of script based programs such as Python or Matlab are difficult to translate to a spreadsheet.
 - Slow computation and graphic response of spreadsheet.

Background

- Previous work for 1Gbps and 10Gbps using NRZ link models
 - Del Hanson, David Cunningham, Piers Dawe and David Dolfi (for 10G)
- Prior works for equalized channels :
 - D. Cunningham proposed a 3-tap equalizer for PI-6 (12-044v1, 12-123v0)
 - However, required several sheets (one per link length) and valid only for NRZ
 - PAM-4 power budget penalties require more sophisticated equations than NRZ
 - Equalization taps need to be efficiently computed for each length in one sheet
- In Fibre Channel, PAM-4 has been modeled using additional software packages
 - For Python languages 16-013 v0, 16-012v0
 - For Matlab 15-263v0
 - An Excel VBA was proposed in T11-2016-065v0
 - Fully implemented PI-6P (32GFC NRZ)

Objective

- Discuss the benefits of having a link model spreadsheet as a guidance during the standardization process of new PMDs
- TDECQ suitable for production test, however,
 - Based on assumptions that might not represent actual channels
 - Proxy for PDFs, Bessel-Thomson filter representing MMF and receiver,
 - Thresholds from OMAs (sensitive to small variations).
 - Sampling points and effects of eye skew
- A link model spreadsheet can be easy to use and share
 - Real-time results enable collaboration among participants
 - Enable relative comparison of PMD solutions
 - Comparing penalties due to data rate differences, wavelengths (Pimpinella_NGMMF_02_0118), reaches
 - Compare additional power budget penalties between MMF PMD from IEEE 802.3cd vs Fibre ChannelPI-7
 - Compare penalties between modulation formats (PAM vs NRZ)

New Penalties for Optical PAM-4

- PANDUIT
- Modeling based on multi-mode rate equation is accurate to predict VCSEL performance.
 - However, it is computational demanding and impractical for a spread-sheet link model.
- Gaussian approximation for multi-level channels use analytical expressions
 - They could be easily implemented in link models.
 - However, Gaussian models need additional consideration to represent real channels.

The Gaussian Channel

$$h_e(t, T_r, T_p) = 0.5[\operatorname{erf}(k \frac{[2t + T_p]}{T_r}) + \operatorname{erf}(k \frac{[-2t + T_p]}{T_r})]$$

where T_p is the symbol period, and T_r is the 10-90% overall system rise time which comprises the laser, fiber, and the photo-receiver response.

For PAM-M where M=4, the worst case bottom eye represented by E_L, shows the combined effect of ISI and Jitter degradation.

$$E_{L}(J,T_{r},T_{p}) = h_{e}(0.5JT_{p},T_{r},T_{p}) - (M-1)[1 - h_{e}(0.5JT_{p},T_{r},T_{p})]$$

Power Penalty

 $P_{ISI+J}(J,T_r,T_p) = -10\log_{10}(E_L(J,T_r,T_p))$

From "Investigation of 60Gbps PAM-4 using and 850 nm VCSEL and MMF, "IEEE, Journal of Lightwave Tech, Vol. 34, Issue 16, pp. 3825-3836 (2016)

PANDUIT

ISI-Jitter Penalties for equalization of PAM-4: Equalizer example with 3 tap

• The response for an equalized channel is given by,

 $h_{f}(t,T_{r},T_{p}) = c_{0}h_{e}(t,T_{r},T_{p}) + c_{1}h_{e}(t-T_{p},T_{r},T_{p}) + c_{-1}h_{e}(t+T_{p},T_{r},T_{p})$

• For simplicity, only 3 taps are shown here

$$c_0 = 1;$$
 $c_1 = c_{-1} = \frac{h_1}{h_o} (\frac{2h_1^2 - h_o^2 + \sigma^2}{h_0^2 - h_1^2 + \sigma^2});$

- where, $h_0 = h_e(0, T_r, T_{PAM})$ and $h_1 = h_e(T_{PAM}, T_r, T_{PAM})$.

The worst eye height is given by,

$$E_L^{t=0}(T_r, T_p) = W_1(0, T_r, T_p) - W_0(0, T_r, T_p)$$

$$\approx h_f(0, T_r, T_p) + 2(M - 1)[h_f(2T_p, T_r, T_p) - h_f(T_p, T_r, T_p)])$$

The worst eye width is given by L sequences:

$$E_{Eq}(J, T_r, T_p) \approx E_{eq}^{t=0}(T_r, T_p) \max\left(2\frac{L(|0.5JT_p|, T_r, T_p)}{L(0, T_r, T_p)} - 1, 0\right)$$

 $\frac{Power Penalty}{P_{ISI_{+}J} = 10log10(EEq(J,Tr,Tp))}$

From "Investigation of 60Gbps PAM-4 using and 850 nm VCSEL and MMF, "IEEE, Journal of Lightwave Tech, Vol. 34, Issue 16, pp. 3825-3836 (2016)

Eye skew as deterministic jitter

• Eye skew penalties can be incorporated as an additional of deterministic jitter.

$$P_{ISI_{+}J} = 10\log 10(Eq(J + \left(\frac{\Delta T}{T_{p}}\right), Tr, Tp))$$

Noise Penalties (work in progress)

- Rescale RIN and signal dependent noise due to multilevel symbols
- Higher level signals have more penalties

$$\Delta No = 10\log_{10}(\frac{s_{W} + \sqrt{s_{W} + s_{RIN-OOK}}}{\sqrt{F_{W}s_{W} + (\frac{M-2}{M-1})^{2}F_{RIN}s_{RIN-OOK}} + \sqrt{F_{W}s_{W} + F_{RIN}s_{RIN-OOK}}}$$

From "Investigation of 60Gbps PAM-4 using and 850 nm VCSEL and MMF, "IEEE, Journal of Lightwave Tech, Vol. 34, Issue 16, pp. 3825-3836 (2016)

PANDUIT

Link Model Spreadsheet

11

Limitations of Link Model Spreadsheet

A significant portion of the worksheet is used for intermediary computations

Mostly Input parameters

Modified Spreadsheet

- VBA code example for:
 - Handling all power budget penalties and equalization up to 5 taps.
 - Fully implemented in VBA for OOK or PAM4
 - Dispersion Module and Equalizer module for 3 taps shown as an example.

```
Sub Dispersion Module()
L = Reach
D1 = 0.25 * D slope * lambda c * (1 - (lambda z / lambda c) ^ 4)
D2 = 0.7 * D slope * Spectral Width
D = (D1 ^ 2 + D2 ^ 2) ^ 0.5 'ps/nm km
BWcd = 0.187 * 10 ^ 6 / (L * Spectral Width * D)
Ts = Ts 20 80 * 1.518 '%ps converted to 10%-90%
BWmc = Sqr(1 / ((1 / BWme * L) ^ 2 + (1 / BWcd) ^ 2))
Tr = c2 * 10 ^ 3 / BWrec
Te = (Ts ^ 2 + 10 ^ 6 * (c1 / BWmc) ^ 2) ^ 0.5
Tc = (Te^{2} + Tr^{2})^{0.5}
End Sub
Sub Compute Taps()
b1 = 0: b2 = 0
arg = 2.563 / 2 / (2 ^ 0.5) * (Teff / Tc)
If EQ flag = 1 Then
   h0 = (0.5 * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
   h1 = (0.5 * (WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf(arg * 1)))
   b1 = h1 / h0 * (2 * h1 ^ 2 - h0 ^ 2) / (h0 ^ 2 - h1 ^ 2)
   b_2 = 0
End If
```

Modified Spreadsheet

- VBA code example for 5 tap equalizer:
 - Handles all power budget penalties and equalization up to 5 taps.
 - Fully implemented in VBA

```
'%%%%% Compute Equalizers
Sub Compute Taps()
b1 = 0: b2 = 0
arg = 2.563 / 2 / (2 ^ 0.5) * (Teff / Tc)
If EQ flag = 1 Then
   h0 = (0.5 * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
   h1 = (0.5 * (WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf(arg * 1)))
   b1 = h1 / h0 * (2 * h1 ^ 2 - h0 ^ 2) / (h0 ^ 2 - h1 ^ 2)
   b_2 = 0
End If
'%%%%%%%%5 taps
If EQ flag = 2 Then
   h0 = (0.5 * (WorksheetFunction.Erf(arg * (1)) - WorksheetFunction.Erf(arg * -1)))
   h1 = (0.5 * (WorksheetFunction.Erf(arg * (3)) - WorksheetFunction.Erf(arg * 1)))
   h2 = (0.5 * (WorksheetFunction.Erf(arg * (5)) - WorksheetFunction.Erf(arg * 3)))
   deno = h0 ^ 5 + 2 * h0 ^ 4 * h2 - 3 * h0 ^ 3 * h1 ^ 2 + h0 ^ 3 * h2 ^ 2 - 2 * h0 ^ 2 * h1 ^ 2 * h2 - 2 * h0 ^ 2 * h2 ^ 3 + 2 * h0 * h1 ^ 4 + 9 * h0 *
   b2 = -(h0 ^ 4 * h2 - h0 ^ 3 * h1 ^ 2 + 2 * h0 ^ 3 * h2 ^ 2 - 5 * h0 ^ 2 * h1 ^ 2 * h2 + 3 * h0 * h1 ^ 4 + 2 * h0 * h1 ^ 2 * h2 ^ 2 - 4 * h0 * h2 ^ 4
   b1 = -(h0 ^ 4 * h1 - 2 * h0 ^ 2 * h1 ^ 3 - 3 * h0 ^ 2 * h1 * h2 ^ 2 + 8 * h0 * h1 ^ 3 * h2 + 2 * h0 * h1 * h2 ^ 3 - 2 * h1 ^ 5 - 6 * h1 ^ 3 * h2 ^ 2
End If
End Sub
```


Modified Spreadsheet

PANDUIT

 No equations in the results cells. VBA module updates results when an input is changed
 Two new Inputs for Equalization Type

and Signal Levels

												-											
- A	В	C	E F	G	Н	I J	K L	VIN O	P	Q R	S	T	4	V	W X	Y	Z AR	AB AC AD	AE .	AF AG AF	AI AJ	AK AL	AM AN AC
1 Spread:	heet by	Bei Hanson, Da	vid Cunningham	, Piers Dawe	, David Do	olfi Agilent Teo	hnologies	Rev. 3.2/3	3 This	file	10GEPBud3_	1_16a.xls		of	17-Oct-01	Equalizer	0	()) No Equalizer, (1	1) FFE 3 Tap:	s, (2) FFE, 4 Tap	test erf arg 10	1.365	
2 Basics	Input=	Bold	Ts(20-8	30) 20.0 j	os L(Case: 350nm -	seria nevMM	F Attenuation	⊧ 3.5 di	3/km	Modeli	format rev	<u>3.1.16a</u>	of	31-00-01	1 M	2				test erf arg 2c	0.432	
3	_ Q=	*****	Ts(10-5	30, 30,4 p	os /	<i>(arget</i> arget r	ach 0.100 km	i Fiber	at" 850 ni	n	NomSens ON	1A	dBm	Margin "	0.00 dB a		81=	2.563 no units	ERF	arg= 1.75 no u	nits test ISI(DJ)	0.405	
4 Bas	e Rate=	MB4		1A) •••••	1B/Hz a	and L_s	tart= 0.05 kn	C_at	t= 1.00	Receis	er RefiRx	-12	dB	Answer/	*0.1km			0.0432 ps/(nm.km)	E	ERF= 0.99 nou	hitsst ISI(DJ,RN2dB) *	0.405	
5 Transm	iter 		RIN at Min	ER -139.6 (وا B/Hz	<u>raph L</u>	inc= #### kn	Attenuation	i= 3.62 di	5/km	Rec_B\	/= ••••	MHz [[est Rx BV	₩## MHz		Geo mean R	0.0631 linear units	ISLTP:	4_Rx* 0.95 nou	nits		
6 Waveler	ngth Uc	840 nm	HIN_COM	et= 0.70		Power Budg	xP= 7.80 db		at' 840 ni	n		IN 329	ns.MHz	2		Speciex	tinction ratio	1.99 linear units	Vrin(2m	ntest)"###### rel.v	ariance into test Hx		
7 HXISW	dth, Uw	0.60 nm	UJ+& TP4e	ye 19.4 j	os inc. DCD	Connection	setc 1.00 db	Uisp. min. Uo	⊨ 1316 ni	n	1_013	0 17.5	ps	Test Sourc	etH=	Speciext.	ratio penalty	3.01 linear units		Vmn 1.6E-03 (varia	ance RIN test (SI(UJ)	1	
8 IX PN	UMA=	-3.00 dBm	000_0	U= 1.78 p	os IP3 F	Pwr.BudConn	Loss 5.8 dt	Lisp. So)= 0.103 p:	rnm 2 km	TP4 Eye	· (ps	lest Ix	6.5 .6	lest So	urce ER pen.	1.98 dB	I_test_rx[10	U-9U) 15.6 ps	3.6 dB 1: 0.5	0.72	
3 Min. Ex	t Hatio>	3.00 dB	Effect, L	U= 0.52 (UI) ex UCL	U // ./	U1= 480 ns	.MHz Disp. D	l= -108.41 p:	ilnm.km)	Opening		(=Tx ey	TestERper	1.98 dBo	Nett	txt Ripen Per	2.81 dBo	T i (stic' 34.2 ps	0.5 "	0.28	
10 Worst"al	e. I xPwr	-1.22 dBm	MPN KUP	H) U.J	Hel	Hection Noise F	actor U no	units		RMSI	Saseline wander (5U ****	traction	TOF1/2 eye		м. т.	OMA-	E01	lesterra Tastaría	arg Ib' 1.35			
11 EXt. ratio	penaity Vii	4.13 GD0	ix eyenek	nr 20.3/.	ID.	Effective	Hate 20020 M		ej IU - 4400		D. DU.K.	0.01		V.E.U.P.	#### <u>dDo</u>	1910.18	power UMA=	201 UW	Testerra	rg 201 0.43			
12 IX mask	AF V2-	0.3 U	Heri Madalahar S	18 -12 (Effective De	Euro 0.21 LU		- ###### M	HZ KM		SIJ 0.01			Stressed	worst av	e launon pwr	roo. Luw	l est closed	<u>aeye' 0.41</u>			
13	AZ= V1=	0.4 0	Turnalu	ren 🚺 0.2 i	" - F	Effective Rec	Eye U.ZIU	D I Decileation	- ###### 1	nz km	- F_DL	.w 0.01	ab	IDD:s		5			1		1		
14 47	T I= D-#		D21 BVA	op: U.Z.I	<u></u>	To control	eregi esetvel ese	Do Prefiection	SDeep D	D.	cross	Protai	< Ptotal	LF Fen	Mixin control								
0 L 6 (lon)	(JB)	(dB) Index	DZ.L DWO) (MH+)	(ne)	for central	GRI (HR) G	Ri (JR)	i Johiph Fi 6		n enuar	(JR)	(JR)	(JB)	(JB) (JBm)	-			-				
10 (KIII) 17 0.002	0.007	10072 -0.2	9E=05 14374) (Pin2) 121-2E±06	30.36	35.04 2.45	0 1654 3	<u>69 0 00</u>	12 3E-05	0 0.56	3715 0 6450	11 4 806	8.49	4 79839	199 -4.67				0				
10.002	0.001	11992 -6.2	: 0.002 52269	8 80000	32.28	36.72 2.79	0 1671 3	74 0 0.39	12 JE-0J 12 D.0221 (0 0.00	113 0.00430 1389 0.8 158	77 5 396	9.14	5 19676	14 -4.89					1,	Power penalties vs. distance		_ —
10 0.000	0.100	12174 -6 9	0.002 02200	14 73333	32.63	37.03 2.86	0 1674 3	75 0 0.36	2 0.0221 (2 0.026 (102 0.50	1344 0.08 94	19 55	9.25	5 28294	13 -4.92	0.9	\sim	\times					
20 0.065	0.235	12355 -7	0.003 44228	3 67692	33.01	3736 2.00	0 1678 3	77 0 0.39	2 0.020 (12 0.0302 (104 0.51	672 0.00 55	5 5 615	9.38	5 37998	118 -4.96	0.8		$< \times$	\sim				1
0.000	0.200	12536 -7.6	0.000 44220	12 62857	33.42	37.72 3.01	0 1683 3	78 0 0.42	2 0.0002 0 2 0.0346 0	05 0.58	3717 0.106	39 5 742	9.53	5 48865	106 -5	0.7	1>	\sim		•			-
22 0.075	0.204	12717 -81	0.003 3833	12 58667	33.84	381 3.09	0 1688	38 0 0.45	2 0.0040 (2 0.0392 (106 0.592	553 0 11 17	19 5 881	9.68	5 60974	0.92 -5.05	0.6			\times				
23 0.08	0.29	12898 -87	0.003 35935	55 55000	34.3	38.5 3.18	0 1694 3	82 0 0.48	2 0.00002 0	0.00	464 0 123 8	58 6 034	9.86	5 74416	0.77 -51	0.5	X	\sim		Ŧ			
24 0.085	0.308	13079 -9.2	0.004 3382	17 51765	34 77	38.93 3.28	0 17 3	85 0 0.5	13 0.049	01 0.61	3716 0 137	21 6 201	10	5 89293	0.6 -5 15	0.4	$\langle \$			ALT A			1
25 0.09	0.326	1.326 -9.8	0.004 31942	2.7 48889	35.27	39.37 3.38	0 1708 3	87 0 0.54	3 0.0541 1	112 0.63	2615 0.1552	53 6 883	10.3	6.05722	0.42 -5.22	03		\times		· · · · · · · · · · · · · · · · · · ·			-
26 0.095	0.344	1.3441 -10	0.004 3026	1.5 46316	35.79	39.84 3.49	0 1.717	3.9 0 0.57	3 0.0594	0.14 0.65	1522 0.17628	49 6 583	10.5	6.23838	0.22 -5.29	0.2							_
0.1	0.362	1.3623 -1	0.004 28748	3.4 44000	36.33	40.32 3.6	0 1.726 3	94 0 0.60	3 0.0647	0.17 0.673	864 0.20187	3 6.8	10.7	6.43807	-0 -5.37		\sim	imes imes	<	+ + + + + +	+++++++++++++++++++++++++++++++++++++++		
20 0.105	0.38	1.3804 -1	0.005 27375	3.4 41905	36.88	40.82 3.72	0 1.737 3	98 0 0.63	3 0.0701	0.2 0.70	0161 0.23309	5 7.039	11	6.6583	-0.2 -5.46					' × × × × ×	*******	**	- 1
29 0.11	0.398	1.3985 -12	0.005 26134	4.9 40000	37.46	41.34 3.85	0 1.75 4	02 0 0.66	3 0.0755 0	.24 0.73	1051 0.2714	1 7.3	11.3	6.9016	-0.5 -5.57	, 0						1	
30 0.115	0.417	1.4166 -12	0.005 24998	3.6 38261	38.05	41.88 3.98	0 1.764 4	07 0 0.69	4 0.081 0	.28 0.761	327 0.31895	7.588	11.7	7.17122	-0.8 -5.68	-0.1	0.2 0.2 0	4 05 05 07 0	· · · ·		antin P_D/ antini		Palatikouriat
31 0.12	0.435	1.4347 -13	0.005 239	57 36667	38.66	42.44 4.12	0 1.78 4	.13 0 0.72	4 0.0865 0	.32 0.803	992 8.37853	4 7.906	12	7.47152	-1.1 -5.82	2 0 0.1	0.2 0.3 0	Time (111)			- <u>- ia</u> _		
32 0.125	0.453	1.4528 -14	0.005 22998	3.7 35200	39.28	43.01 4.27	0 1.799 4	.19 0 0.75	64 0.092 0	1.36 0.860	0.45434	59 8.261	12.5	7.80845	-1.5 -5.97	' Ó		mas, pr	0				
33																							
- 1			-						/											$\overline{\mathbf{v}}$			
					T														Dlo	tc			
																			FIU	15			
					-																		
	-		C	+ +	-	1																	
		VIOST	ot t	ne r	'esi	ults	Fac	n cell			VIOST	'IV I	nr	out	par	amei	ters	Anv c	nan	ge			
										1		. , ,			201					0~			
					1							-	-		-	- ندما							
	(conta	ains a	a va	IUE	s no.	latl	ITICTIC	JN	τ	rigg	ers	a	rec	alcu	iiatio	to n	the re	esult	IS			
									1	1	00	-					-						4.5
																							15

Examples

To be shown during presentation

Examples

PANDUIT

• To be shown during presentation

AutoSave 💿 Off 🛛 🖬 😙 🗸 🏞 🔻	Link_Model_VBA_v3.xlsm - Excel	Jose Castro 💿 — 🗇 🗙
File Home Insert Page Layout Formulas	Data Review View Developer Add-ins Help Power Pivot Team ${\mathbb Q}$ Tell me what you want to do	占 Share
$\boxed{G5} \vdots \overleftarrow{f_x} = G4-2*C$	11	^
A B C D E F C H 1 Spreadsheet by Del Hanson, David Cunningham, Piers Dawe, David Dotti Aglient 2 Base Input= Bold Ts(20-80) 19.0 ps Case: 53 3 0 - 3.6973 Ts(20-80) 19.0 ps Case: 53 4 Base Rate: 28900.0 MBd RIN(0MA)	J. K. L. M. N. O. P. O. R. S. T. U. V. W. X. Y. Z. AA. AB. AC. AD. A. At Technologies Rev. 3.2/3 This file 100EPBud3_1_6axis of 17-Oct-01 Equalizer 2 (I) No Equalizer, (I) FEE 3 fail Omm seria newMMM Attenuation= 3.5 dB/rm Model/formatrev/3.16s of 17-Oct-01 M 4 Ogen seria newMMM Attenuation= 3.5 dB/rm Model/formatrev/3.16s of 17-Oct-01 M 4 L_state 0.01 km F/Der at/ 85 on m NonSens DMA: -120 dB Margin / 0.00 dB J+47124 yet pis 8 B1= 2.563 no units L_state 0.01 km C.att 1.00 Rec.BV= 7.04 B Answer/ 0.1 km FVETILT DJ (ps) 0 D2/2 0.0396 ps/inm.km Lince 0.003 km Attenuation= 3.62 dB/rm Rec.BV= 7 ps Test Source ER= Spec exit.ratio penalty 3.01 linear units CrinLines 0.1038 ps/inm*2*km T p4/Eye 7 ps Test Source ER= 1.80 dB Test Source ER pen. 1.90 dB T_star Spec exit.ratio penalty 3.01 linear unit	AE AF AG AH AI AJ AK AL AM Am tpps, (2) FEE 5 Taps test ef arg 1c 1.088 test ef arg 2c 1.088 ERF arg 1.72 no units test 15(10,1) 0.581 test ef arg 1c 1.088 ISI, TP4, R* 0.94 no units to test Rx 0.94 no units to test Rx 1.581 1.091 Vm 4, 0E-03 (variance RIN test 15(10,1) 1 test arg 1c 0.57 0.72 Test Tc 32.6 ps 0.55 0.72 test arg 1c 0.28 est ef arg 1c 0.58 1.09 0.52 ps 0.55 0.28 est ef arg 2c 0.74 3.6 del !: 0.5 0.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9:99 14 1729 0.80 0.000 0.0113075 0.202314 3139 318027 14 148 1822 1201 14 1740 0.80 0.0157 0.002014 3139 318027 14 148 1822 1201 14 1740 0.89 0.0157 0.0020 0.0122413 0.2024893 3226 318071 14 14822 1201 14 1740 0.89 0.0112766 0.0204893 3226 323 3220155 133 -1919 1231 15 1759 0.89 0.0112705 0.0204893 3248 327577 124 -1938 1289 15 1787 0.69 0.0238 0.0013 0.0111755 0.0214076 3444 413 331181 119 -1976 1289 15 1787 0.69 0.0238 0.0013 0.0111456 0.0224937 3384 413 331189 113 -198 1318 15 1870 0.69 0.238 0.003 0.01111652 0.022493 3384	
3 TP4 Eve Width Extension: J Petril Avao: Technologies 8 Reach. Peye TP1 RJ, UI = 0.110 3.81 ps for BER=E-12 1 m dB TP1 RJ, UI = 0.0082 0.28 ps 2 63 -1.18 TP1 RJ, UI = 0.0082 0.28 ps 45 63 -1.18 TP1 RJ, UI = 0.0082 0.28 ps 45 64 TP1 RJ, UI = 0.010 3.81 ps 46 BER = -11E4M TP3 DJ wol SI, UI = 0.0240 8.30 ps 47 QINGBERI 0.319 13.5 ps 48 SC735 DJ wol SI, UI = 0.039 13.5 ps 49 GVI.000ERI DJ at TP4, UI = 0.039 13.6 ps 49 SC735 Cum RU(TP4), UI = 0.759 2.65 ps 40 SC MSW, M KUDJ TP4 TJ QIGEERI, UI = 0.759 2.75 ps TP4 TJ Jan 50 L4537 0.85 TP4 LD, UI = 0.691 2.33 ns MM 51 Z4537 0.85 Motes BaseOM4(1) BaseOM4_vb	### 1.18 0.07 3.00 0.00 0.00 0.00 -0.45 -0.04 -1.62 -2.64 -1.62 -0.55 ### 1.18 0.07 -3.00 0.00 0.24 -0.02 -0.45 -0.04 -1.62 -2.64 -1.62 -0.55 ### 1.19 0.07 -3.06 0.00 0.24 -0.02 -0.45 -0.06 -2.14 -3.76 -1.99 -0.03 ### 1.20 0.07 -3.06 0.00 0.24 -0.03 -0.04 -0.06 -0.44 -3.76 -1.99 -0.03 ### 1.20 0.07 -3.06 0.00 0.24 -0.03 -0.04 -0.07 -2.28 3.92 -2.13 0.10 ### 1.20 0.93 0.00 0.24 -0.03 -0.04 -0.07 -2.28 3.92 -2.13 0.10 ### 1.20 0.11 3.00 0.024 -0.04 -0.06 -0.04 -0.02 -0.47 -2.21 0.18 ### 1.26 0.11 3.	
📀 🤌 🔍 🔯 🛐	📔 🤌 💽 🚺 🖬 🚺 🛤 💀 🗄 🗠 🧕 U 🍪 😡 🕯	19:44 PM 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Summary and Conclusions

- Discussed the benefits of having a link model spreadsheet as a guidance during the standardization process of new PMDs
 - Sharing and collaboration
 - Real-time results (click and see)
 - Enable relative comparison of PMD solutions
 - Comparing allowable reaches and penalties due to:
 - data rates, wavelengths, BER, modulation formats ...
- Develop models for equalized PAM-4 channels
 - Presented models for ISI, Jitter and Power dependent noise
 - New functions for Multi-level signals (VBA or dlls)
 - Still more work to do...
- Invite collaboration to develop a shared model

QUESTIONS

BACKUP

TDECQ modeling presented in fiber channel in 2017

Sensitivity to thresholds...

Eye Statistics

