Contact Interruptions due to Dynamic Load,

e.g. Vibrations / Mechanical Shock

Bert Bergner / TE Connectivity

07th July 2014 – 802.3bp PHY Ad Hoc Call

Supporters:

Connector Qualification – Dynamic Load ("Vibration")

- Typical profiles and values according to OEM specifications
 - Sinusoidal sweep to detect mechanical resonances

a_peak=10m/s², frequency range 5~2000Hz

• Sinusoidal sweep for engine application (highest severity 4)

a_peak=100~200m/s², frequency range 100~440Hz (maximum acceleration for f=200...240Hz)

• Broadband noise for engine application (highest severity 4)

a_rms=181m/s², frequency range 10~2000Hz (maximum spectral density 20(m/s²)²/Hz for f=500...2000Hz)

• Continuous shocks for body (severity 2, not required for engine applications)

a_peak=30g, half sine, pulse width 6ms (corresponds to ≈83Hz sine)

 \rightarrow Mechanical excitation frequencies are in the lower kHz range.

Qualification Criterions & Experiences

Criterions according to standards:

- Continuous monitoring of contact resistance during tests
 - no interruption longer than 1µs
 - Interruption is defined as contact resistance > 7Ω
- Visual inspection (microscope) of contact surface after test
 - no damage of contact surface allowed (no "wear-through")

Experiences:

- Interruptions usually do not occur as a single event but as the begin of contact failure and permanent damage due to overload
- Contact surfaces are damaged in such cases

Other Considerations & Assumptions

<u>1µs Acquisition Time vs. Frequency Range:</u>

- 1µs "sampling time interval" corresponds to 1MHz "sampling frequency"
 - → acquisition bandwidth 0...500kHz (Nyquist-Shannon theorem)
 - \rightarrow corresponds to signal rise times up to 700ns (f_{-3dB}=500kHz)

Eigenmodes of Contact Systems:

- Analyses are done with regard to ultrasonic welding
 - → first Eigenmodes of contact body typically in the region below 100kHz
 - → mechanical movement due to excitation by direct coupling and high energy amplitude, e.g. us-welding

Mechanical Excitation in the Application:

Example: Eigenmode analysis on contacts

 No fast mechanical excitation (>700ns rise time) with high energy in real applications → "low pass" characteristic of mechanical systems

Summary & Conclusion

- High energy vibration sources in cars operate at low frequencies (lower kHz range)
- Connector qualification for mechanical shock and vibration is done according OEM specification with defined load profiles
- Connector qualification requires demonstration of interrupt-free operation for these load profiles
- Acquisition time of 1µs is short enough to detect interruptions caused by these mechanical load profiles
- High energy mechanical excitation for very high frequencies (>500kHz) is unlikely due to the mechanical low pass characteristic of cable harnesses, connectors and car body

Conclusions:

- \rightarrow Connector qualification demonstrates no interruption longer than 1µs.
- \rightarrow Un-detected interruptions shorter than 1µ are very unlikely.

