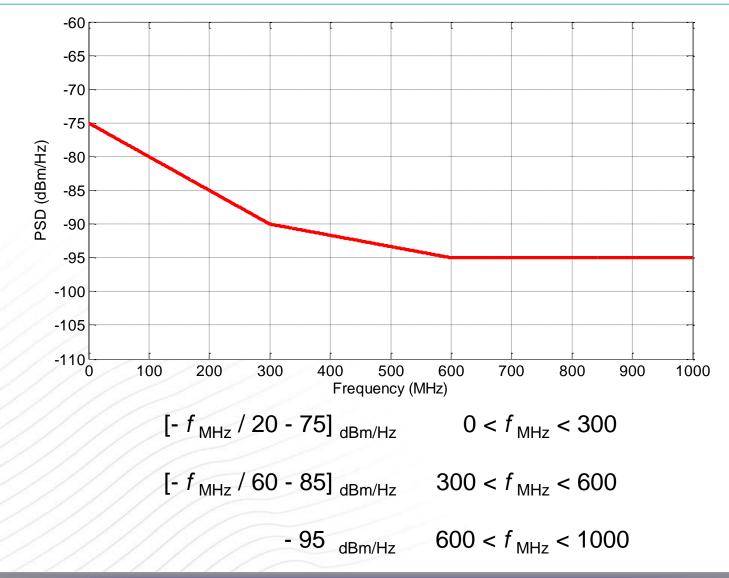
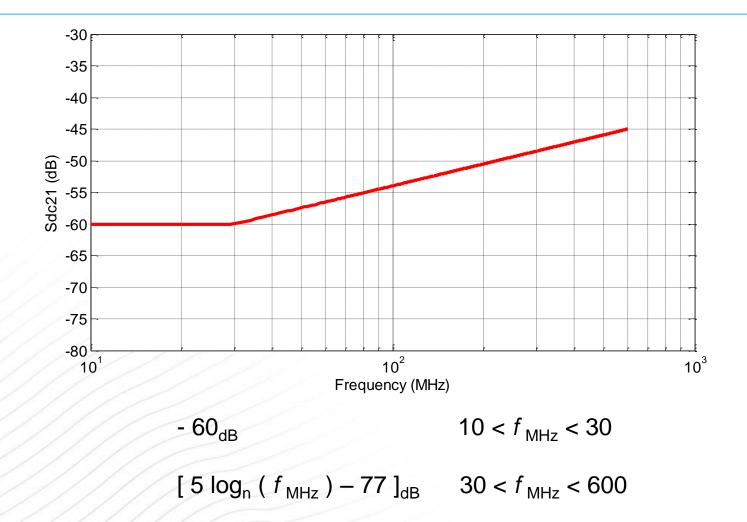
802.3bp RTPGE Mode Conversion Measurements for Automotive Link Segments

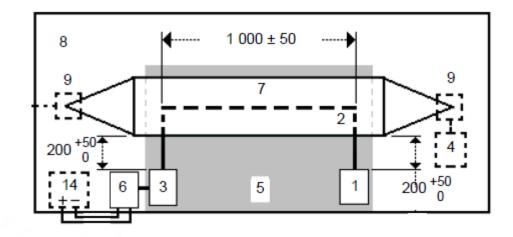

August 20, 2013

Ahmad Chini & Mehmet Tazebay Broadcom Corporation

Overview


- System EMC Testing (as previously proposed)
 - Stripline for emissions testing
 - BCI for immunity testing
- EMC Measurement Setup
 - DUT 5cm over a ground plane (commonly used by automotive OEMs)
 - Will provide a consistent CM impedance among different measurements & setups
 - Components' Testing (cables, connectors, magnetics, etc.)
 - 3-port VNA measurements / 4-port VNA measurements with strictly balanced/calibrated setup.
 - Designing good test heads is most critical
- Critical parameter for RTPGE utilizing UTP solutions
 - → Mode conversion limit line which directly defines the emissions and immunity.
 - → The proposed value corresponds to the most stringent emission limit line (15dBuV) and BCI immunity level (200mA).
 - → Relaxing the proposed limit line will have an impact for tolerable EMC performance.

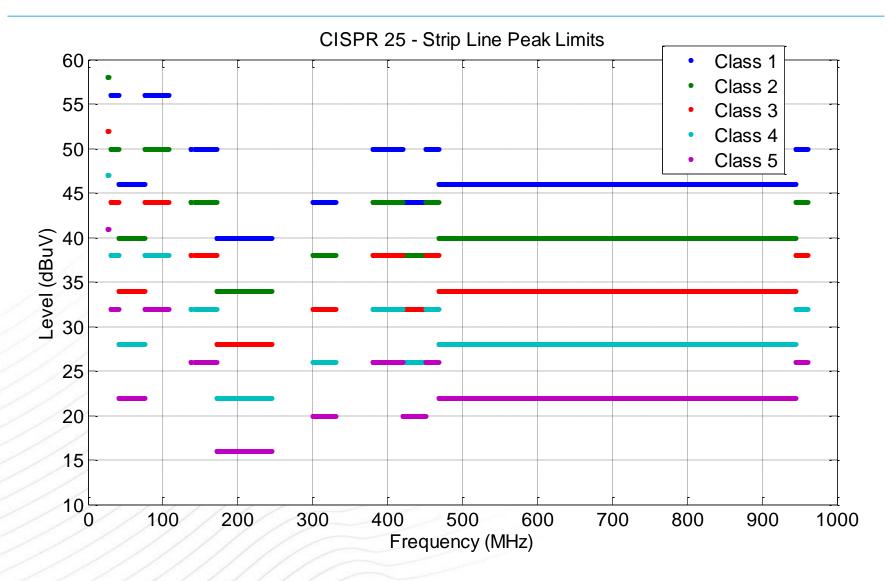
TX PSD Mask Proposal



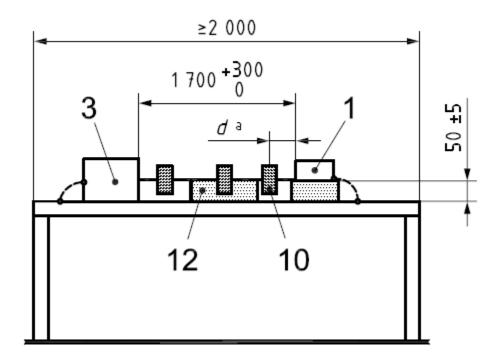
IEEE 802.3bp RTPGE Task Force- August 20, 2013

Mode Conversion Limit Line Proposal

CISPR25 Edition 3.0 2008-03 Figure G.1: strip line test set up


- CISPR25 set up suggests 1000mm cable width under strip line, deviation to 1500mm is seen in some vehicle manufacturers suggested set up.
- 2m cable length is suggested for which the cable width under strip line is calculated to be 1300mm (200+150+1300+150+200).

CISPR25 Edition 3.0 2008-03


Table G.1 radiated disturbances strip line

Service / Band	Frequency MHz	Levels in $dB(\mu V)$									
		Class 1		Class 2		Class 3		Class 4		Class 5	
		Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak
BROADCAST											
LW	0,15 - 0,30	87	74	77	64	67	54	57	44	47	34
MW	0,53 - 1,8	73	60	65	52	57	44	49	36	41	28
SW	5,9 - 6,2	65	52	59	46	53	40	47	34	41	28
FM	76 - 108	56	43	50	37	44	31	38	25	32	19
TV Band I	41 - 88	46	-	40	-	34	-	28	-	22	-
TV Band III	174 - 230	46	-	40	-	34	-	28	-	22	-
DAB III	171 - 245	40	-	34	-	28	-	22	-	16	-
TV Band IV/V	468 - 944	46	-	40	-	34	-	28	-	22	-
DTTV	470 - 770	50	-	44	-	38	-	32	-	26	-
DAB L band	1447 - 1494	Radiated emission – Stripline									
SDARS	2320 - 2345	Not applicable									
MOBILE SERVICES											
СВ	26 - 28	64	52	58	46	52	40	47	34	41	28
VHF	30 - 54	56	43	50	37	44	31	38	25	32	19
VHF	68 - 87	50	37	44	31	38	25	32	19	26	13
VHF	142 -175	50	37	44	31	38	25	32	19	26	13
Analogue UHF	380 - 512	50	37	44	31	38	25	32	19	26	13
RKE	300 - 330	44	-	38	-	32	-	26	-	20	-
RKE	420 - 450	44	-	38	-	32	-	26	-	20	-
Analogue UHF	820 - 960	50	37	44	31	38	25	32	19	26	13
GSM 800	860 - 895	56	-	50	-	44	-	38	-	32	-
EGSM/GSM 900	925 - 960	56	-	50	-	44	-	38	-	32	-

CISPR 25 stripline Peak Emission Limits

ISO 11452-4 BCI set up

• Deviation to use up to 2000mm cable is seen in some vehicle manufacturers suggested setup.

Estimated Differential Noise for Various BCI Thresholds

Flat 200mA BCI noise level \rightarrow 100mVpp Differential at MDI

Flat 100mA BCI noise level \rightarrow 50mVpp Differential at MDI

Flat 50mA BCI noise level \rightarrow 25mVpp Differential at MDI

Notes:

- The values suggested here are for single UTP cable which is assumed to be worst case BCI testing.
- The proposed Sdc21 is used to calculate the worst-case differential noise at MDI

Effecting of Relaxing Mode Conversion Limit Line & TX PSD

Channel Mode Conversion Relative to the proposed level	TX PSD Relative to the proposed level	SNR Reduction	CISPR 25 Stripline Peak Level	200mA BCI Differential Noise Level at MDI	100mA BCI Differential Noise Level at MDI
0dB	0dB	0dB	15dBuV, Class 5 All Freq. Bands	100mVpp	50mVpp
+6dB	0dB	6dB	21dBuV, Class 4 or 5 Depending on Freq. Bands	200mVpp	100mVpp
+12dB	0dB	12dB	27dBuV, Class 3 or 4 Depending on Freq. Bands	400mVpp	200mVpp
+6dB	-6dB	12dB	15dBuV, Class 5 All Freq. Bands	200mVpp	100mVpp
+12dB	-6dB	18dB	21dBuV, Class 4 or 5 Depending on Freq. Bands	400mVpp	200mVpp
				1	1
				1% PER	No BER