PoE Ad-hoc 5/16/12 dmd revised 6/12/12 dmd

Questions for end users (automotive/industrial/etc):

- 1. Is PoE as defined in Clause 33 of the current standard adequate for RTPGE?
- 2. Will vehicles use a mix of Clause 33 and non-clause 33 connections?
- 3. Will PSE ports be dedicated to a specific load or do they need to be "universal"?
- 4. What line voltage should be used?
- 5. What power levels are required?
- 6. Will multiple power classes be required?
- 7. Will the power system need to support surge loads (motor start)?
- 8. What are the isolation requirements?
- 9. What action should a PSE take if a power fault is detected?
- 10. Is a chassis ground always available?
- 11. Will we need to support adding/subtracting nodes to/from a live system (for example, a vehicle trailer or customer-installed equipment)?
- 12. What is the maximum length of a PoE segment?
- 13. Will PoE channels be treated differently (e.g., different wire gauge) than non-PoE channels?
- 14. Do we need to support daisy-chain configurations?
- 15. What is the estimated ratio of powered to unpowered ports?

A quick summary of current PoE (Clause 33) specs:

- PSE = Power Sourcing Equipment, PD = Powered Device
- Line voltage is 44-57V (50-57V for 25W ports)
- 4 power classes available (sensed during detection): 3W, 7W, 13W, 25W
- live insertion and removal of devices is supported via dedicated detection and disconnect protocols. Unconnected PSE ports are unpowered.
- Ports will tolerate limited overcurrent events for 50ms without reporting a fault
- Overcurrent faults are sensed and faulty ports are typically retried
- Ports are galvanically isolated at both PSE and PD
- Power is delivered as a common-mode signal between two pairs
- Power interface to the line is via data isolation transformer center-taps