
1000BASE-T1 Transient pulse shape definition

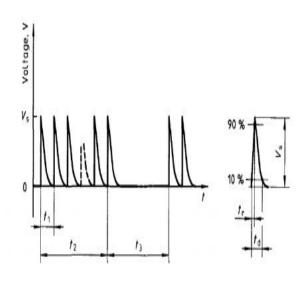
Vijaya G. Ceekala

Texas Instruments

Positive and Negative Test Pulses – ISO 7637-3

 $V_{\rm s}$ (see table A.1 for 12 V electrical systems or table A.2 for 24 V electrical systems)

 $R_i = 50 \Omega$


 $t_{\rm d} = 0.1 \, \mu s$

 $t_{\rm r} = 5 \text{ ns} \pm 30 \% \text{ at } V_{\rm s} = -50 \text{ V}, 50 \Omega$

 $t_1 = 100 \, \mu s$

 $t_2 = 10 \text{ ms}$

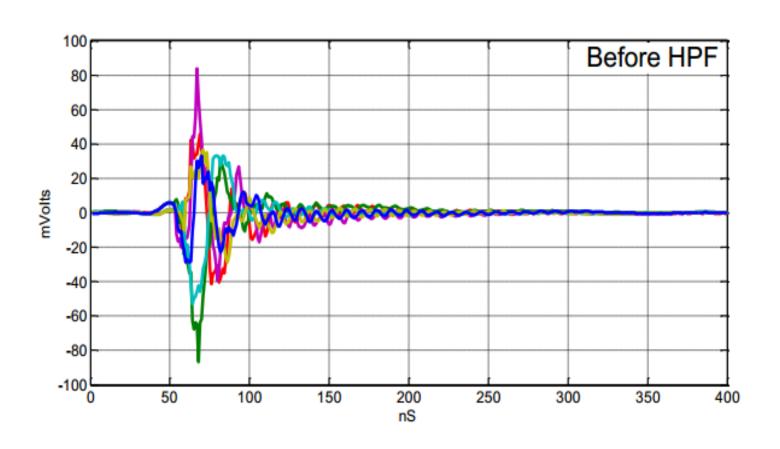
 $t_2 = 90 \text{ ms}$

Parameters

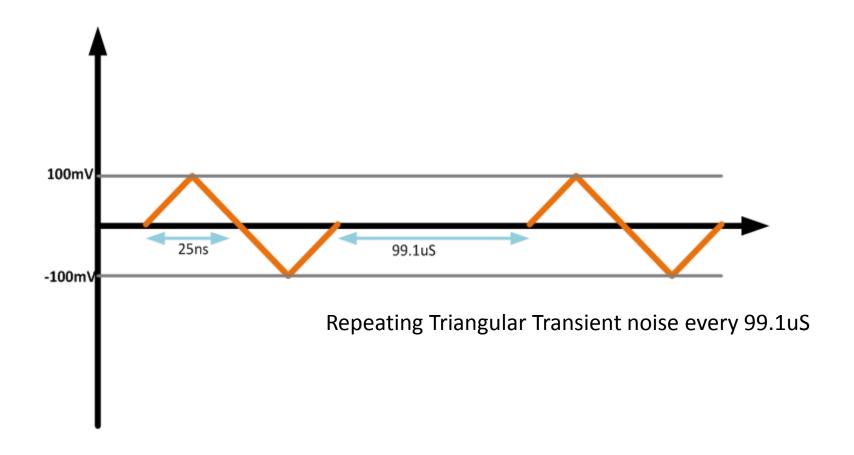
V_s (see table A.1 for 12 V electrical systems or table A.2 for 24 V electrical systems)

 $R_{\rm c} = 50 \,\Omega$

 $t_d = 0.1 \, \mu s$


 $t_r = 5 \text{ ns} \pm 30 \% \text{ at } V_s = +50 \text{ V}, 50 \Omega$

 $t_1 = 100 \, \mu s$


 $t_2 = 10 \text{ ms}$

 $t_3 = 90 \text{ ms}$

Simulated Transient Noises – From (Chini_Tazebay_3bp_01a_0114.pdf)

Suggested Transient Test waveform

Transient Pulse modeling methodology (Without a High-pass filter)

- With some cables, as measured by Chini_Tazebay_3bp_01a_0114.pdf, the
 effect of the transients is seen as a triangular waveform
- This can be modeled by a triangular waveform with 50ns period
- As given by ISO 7637-3, transient test is carried out by periodically applying positive and negative pulses every 100uS
- In a system simulation or modeling environment, when simulating with pseudo-random data patterns, depending on the data pattern being transmitted, the transient waveform may not adversely affect the data integrity.
- Hence the transient waveform needs to be repeated at about 100us time intervals. 99.1uS time interval is recommended