Geneva, July 2013

DOCUMENT SUBMITTED TO: IEEE 802.3bp channel definitions adhoc

SOURCE:	Sterling Vaden		
CONTACT:	Full Name: Sterling Vaden		
	Company: Optical Cabling Corporation		
	Phone Number: +1 828 298-2260		
	Email: sterling.vaden@occfiber.com		
TITLE:	Preliminary Cat8 channel models		
PROJECT NUMBER (PN):	IEEE 802.3bp RTPGE		
DISTRIBUTION:	CHANNEL DEFINITIONS AD HOC		
INTENDED PURPOSE OF	FOR INCORPORATION INTO TIA PUBLICATION		
DOCUMENT:	_X FOR INFORMATION		
	OTHER (Please describe)		

ABSTRACT: Single pair channel Return Loss model

Automotive link segment

For this model I have chosen a connector model that yields Cat6A compliant connector return loss and a cable model that yields Cat6A compliant cable return loss. For the link segment topology, I chose a symmetrical construction with 1m, 2m, 9m, 2m, 1m cable segment lengths. Other topologies could easily be chosen. The 1m and 2m cable segments are modeled with a single impedance offset. The 9m cable segment is modeled with structure.

First we will look at the connector return loss result

Next we will look at the cable return loss profile (cable with structure)

Figure 4 Return loss model result for cable with structure

Figure 5 30m and 10m cable insertion loss

These combine in the model to yield the link segment result. The results shown represent three different selections of cable impedance offsets.

Figure 6 Link segment return loss result, 1-2-9-2-1 channel

Figure 7 15m link segment insertion loss

Well how about that. This points out (in my estimation) a failing of the Category 6A specification that did not include insertion loss deviation in the calculation of the channel insertion loss. Also, for a 15m channel, the return loss is going to play a larger part in the overall insertion loss profile than for a 100m channel. This would require some modeling and curve fitting, as neither the Category 6 nor Category 8 ILD estimates are accurate for this channel. Category 8 ILD = -0.0324*sqrt(f)

Table	6 -	Channel	insertion	loss

	Frequency (MHz)	Insertion loss (dB)
Category 3	1 ≤ <i>f</i> ≤ 16	$1.02(2.32\sqrt{f}+0.238f)+4\cdot0.1\sqrt{f}$
Category 5e	1 ≤ <i>f</i> ≤ 100	$1.02(1.967\sqrt{f} + 0.023f + \frac{0.05}{\sqrt{f}}) + 4 \cdot 0.04\sqrt{f}$
Category 6	1 ≤ <i>f</i> ≤ 250	$1.02(1.808\sqrt{f} + 0.017f + \frac{0.2}{\sqrt{f}}) + 4 \cdot 0.02\sqrt{f} + 0.0003 \cdot f^{4.5}$
Category 6A	1 ≤ <i>f</i> ≤ 500	$1.05(1.82\sqrt{f} + 0.0091f + \frac{0.25}{\sqrt{f}}) + 4 \cdot 0.02\sqrt{f}$