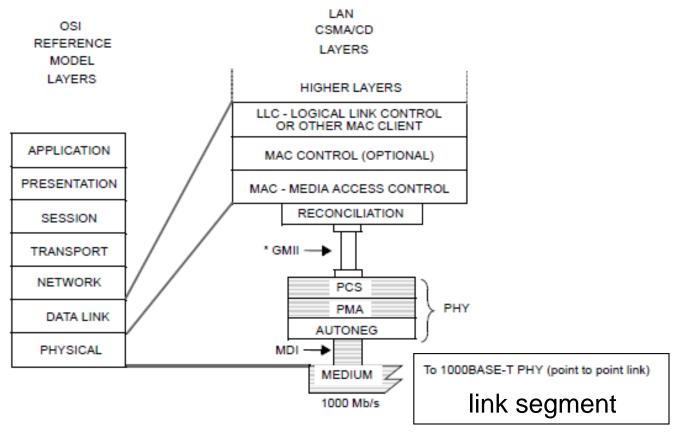
Reduced Twisted Pair Gigabit Ethernet SG Link segments

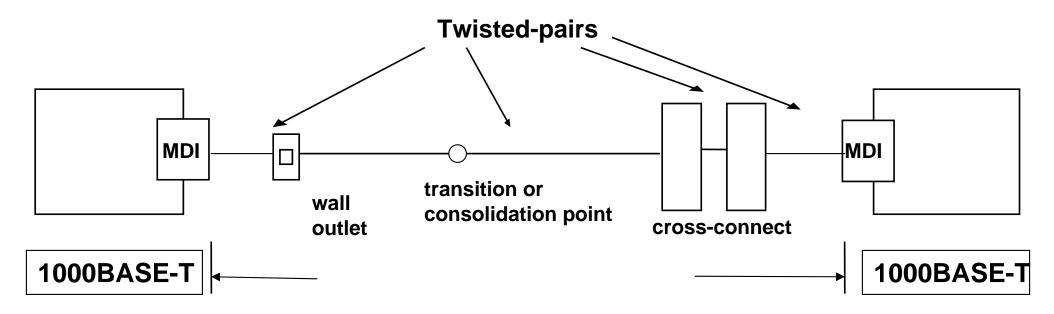

San Diego, CA July 2012

Chris DiMinico
MC Communications/
LEONI Cables & Systems LLC
cdiminico@ieee.org

Purpose

- Link segment characteristics enables considerations for PHY (e.g., signaling, number of differential pairs, etc).
- Technical feasibility

Gigabit Ethernet link segment


MDI = MEDIUM DEPENDENT INTERFACE GMII = GIGABIT MEDIA INDEPENDENT INTERFACE PMA = PHYSICAL MEDIUM ATTACHMENT

PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER DEVICE

*GMII is optional.

Figure 40–1—Type 1000BASE-T PHY relationship to the ISO Open Systems Interconnection (OSI) Reference Model and the IEEE 802.3 CSMA/CD LAN Model

Twisted Pair Link Segment

Structured cabling ISO/IEC, TR42

1000BASE-T Link transmission and coupling parameters

- Insertion loss, Return loss
- **■NEXT, FEXT, Multiple Disturber Crosstalk**

Automotive wiring system

Automotive wiring system example

•Length of cable: more than 3 km

•Number of single cables : up to 1,500

Number of contacts: up to 3,000

•Weight: up to 50 kg

Automotive versus LAN cabling

Topology (identification of link segment)

•Temperature ratings (engine compartments)

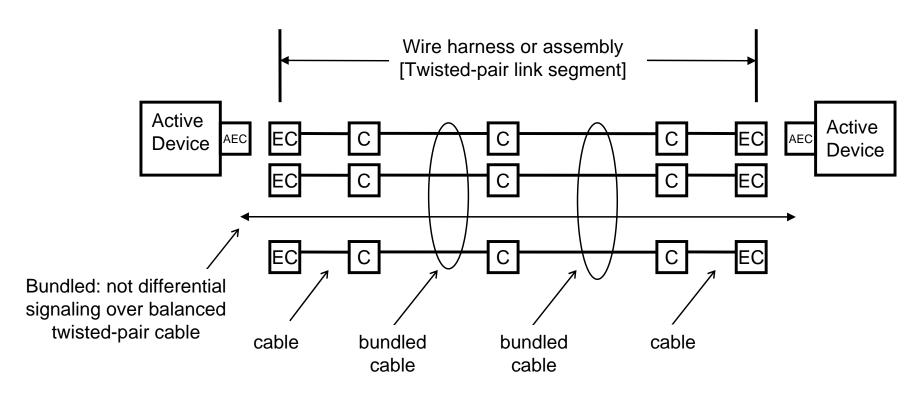
•Jacketing and insulation materials

(resistant to oil, gasoline, hydraulic fluids etc.)

Mechanical properties

RTP Objectives under discussion

- a) Preserve the IEEE 802.3/Ethernet frame format at the MAC client service interface.
- b) Preserve minimum and maximum frame size of the current IEEE 802.3 standard.
- c) Support full duplex operation only.
- d) Support a speed of 1000 Mb/s at the MAC/PLS service interface.
- e) Support point-to-point operation over a N-connector link segment using copper cabling with less than four twisted-pairs.
- f) Support a BER of less than or equal to 10e-10.
- The objectives (a) and (b) were accepted by the Study Group during May-2012 IEEE
 802.3 interim meeting
- The objectives (c) to (f) were reviewed by RTPGE participants on 6/25/2012 Telco and will be presented to the RTPGE Study Group in July-2012 IEEE 802.3 plenary meeting.


RTP PHY link segments

- Topology
- Transmission and coupling parameters
- Environmental
- Topology
 - Length (up to at least 15 meters)
 - •Number of connectors (three)
- Transmission and coupling parameters
 - Insertion loss
 - Link segment noise
 - o Noise within link segment -
 - √ return loss
 - ✓ mode conversion (balance)
 - ✓ For link segments > 1 pair NEXT, FEXT and multiple disturber
 - o Noise coupling between link segments
 - ✓ Alien crosstalk ANEXT, AFEXT and multiple disturber ANEXT and AFEXT
 - o Mode conversion (balance)

RTP PHY link segments

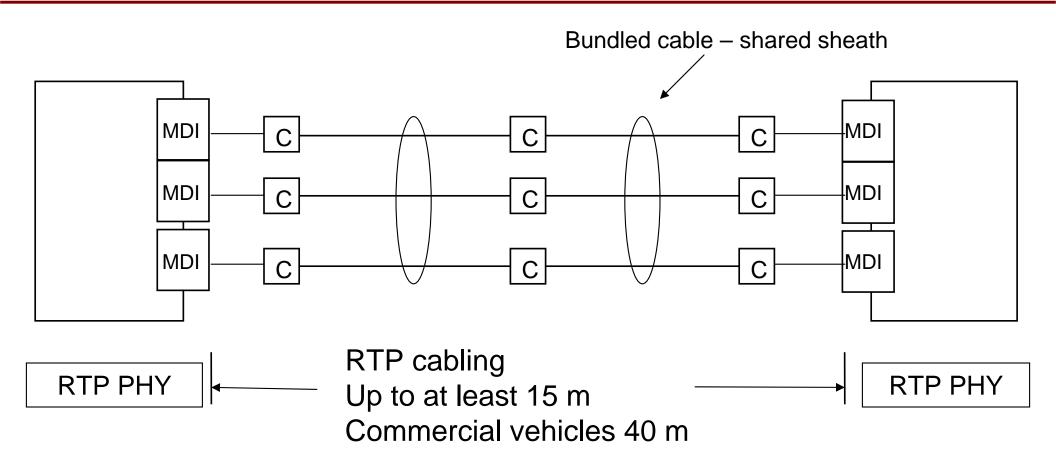
- •RTP PHY electromagnetic environment
 - Susceptibility levels
 - o Sources of interference from the environment (TBD)...
 - ✓ External noise noise from signaling or power in adjacent wire pairs from non-RTP-PHYs
 - Emission levels
 - oThe twisted-pair link segment shall comply with applicable local and national codes for the limitation of electromagnetic.
- •RTP PHY operating environmental
 - ■Specific requirements for temperature, humidity and values for these parameters are considered to be beyond the scope of the RTP PHY specification. (informative annex?)
 - Specific requirements for physical stress (such as shock and vibration) and values for these parameters are considered to be beyond the scope of the RTP PHY specification. (informative annex?)
- •RTP PHY MDI specifications
 - •MDI electrical specifications (TBD)
 - Mechanical interface (non-objective)

Automotive cabling topology

The IEEE 802.3 nomenclature is bracketed to identify relationship to the IEEE 802.3 definitions.

Length objective [EC] to [EC]. Number of inline connectors [C] c = inline connector

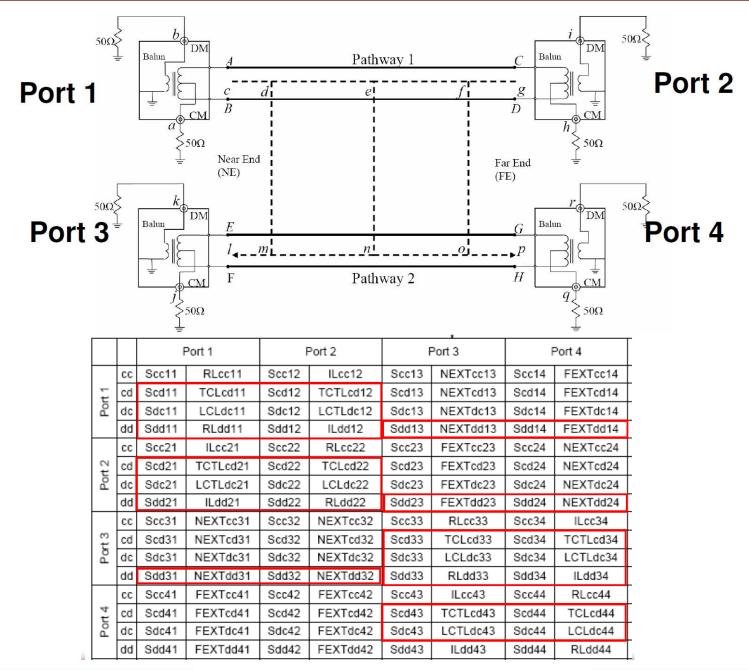
EC = connection to equipment


= Active electronics connector [Medium dependent interface (MDI)]

AEC

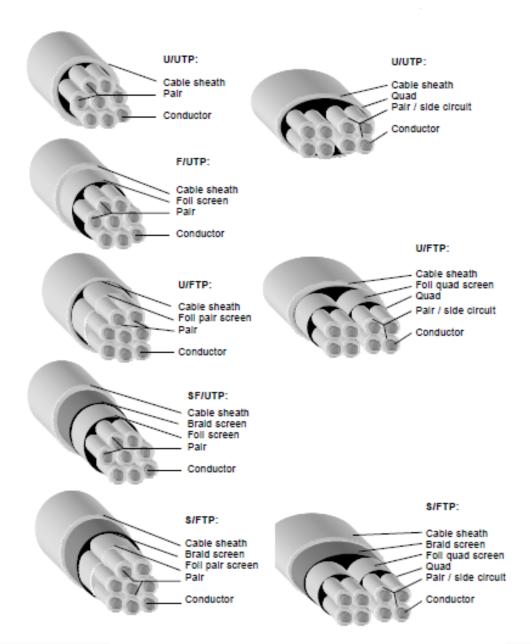
Cabling parameters

Transmission parameters	Coupling parameters (within Link segments)	Coupling parameters (between Link segments)	Balance parameters
Insertion Loss	Near-End crosstalk (NEXT) loss	Alien Near-End crosstalk loss (ANEXT)	Transverse conversion loss (TCL) – SCD11
Differential characteristic impedance	Multiple disturber near-end crosstalk (MDNEXT) loss	Multiple Disturber Alien Far-End crosstalk loss (MDANEXT)	Longitudinal conversion loss (LCL) –SDC11
Return Loss	Far-End crosstalk (FEXT) loss Specified as equal level FEXT (ELFEXT)	Alien Near-End crosstalk loss (AFEXT)	Transverse conversion transmission loss (TCTL) – SCD12
Propagation Delay	Multiple disturber Far-end crosstalk (MDFEXT) loss Specified as MDELFEXT (ELFEXT)	Multiple Disturber Alien Far-End crosstalk loss (MDAFEXT) Specified as power sum (PSAELFEXT)	Longitudinal conversion transmission loss (LCTL) – SDC12
Delay Skew		Specified as power sum (PSAELFEXT)	


RTP Link Segment

RTP Link transmission and coupling parameters

- ■Insertion loss, return loss
- ■NEXT, FEXT, multiple disturber crosstalk
- Alien Crosstalk
- Balance parameters


Cabling parameters to s-parameters naming

Technical feasibility

• 1 Gb/s full duplex operation over 3-connector link segments up to at least 15 meters using twisted copper cabling with less than 4-pairs and meet the bit error rate objective of less than or equal to 10e-10.

Cabling Types

Summary

 Discussion of link segment characteristics for "Reduced Twisted Pair Gigabit Ethernet"