Automotive PoE Requirements for RTPGE

Presentation prepared by:

Helge Zinner (Continental)

Thomas Hogenmüller (BOSCH)

Kirsten Matheus (BMW)

Presentation supported by:

Thomas Suermann (NXP)

Mehmet Tazebay (Broadcom)

Power over Ethernet for Automotive

- This presentation will explain and differentiate the automotive requirements for power transmission over Ethernet data lines
- There is no requirement that Power over Ethernet is part of RTPGE, but
 - Power transmission over the data line needs to be possible (power over data line capability should not be excluded)
 - The RTPGE channel model needs to comprise respective effects

Classification of ECU & Consumer With Respect to Their Power Consumption

High Power ECU (average)	Mid Power ECU (average)	Low Power ECU (average)	Smart Sensors /Actuators
10 – 60 Watt	4 - 10 Watt	2 - 4 Watt	< 2 Watt
800 – 4500 mA			< 150 mA / 12 V
Central Domain Controller, Head Units, Amplifier, Engine Management System,	Gateway, Cluster, Connectivity Unit, 	Mirror heating, Seat adjustment, 	Cameras, Radar sensor, Roof module, Interior light,

Use Cases for Power over Data Line in Automotive

- Of interest for smart sensors
 - Often in "satellite" positions, cable/connector savings significant
 - Changes from car interior to exterior with tight spatial constraints, often very small units, fewer cables use less space
 - Comparably small power consumption
- For all ECU classes it needs to be possible to send power impulses over the data line for wake-up
 - Continuous Power over data line is not necessary for high/mid/low ECUs

Power over Data Line – Saving Potential

PoDL is only useful if costs can be saved

Use Case example – 1-pair camera based system

Saving potential with PoDL	Additional Costs with PoDL
Terminal 30 filter (at camera)	Coupling inductor
Cabling	
Quiescent current can be 0 when device is activated per PoDL	

PoE Ad Hoc questions

- What line voltage should be used?
 - ▶ Today max. 12V
 - 48V will be introduced first of all for ignition and other high voltage ECUs
- What power levels/power classes are required?
 - **2** (3/5/10) Watt
- Will the power system need to support surge loads (motor start)?
 Yes
- What are the isolation requirements?
 - Human body model
- What action should a PSE take if a power fault is detected?
 - Shut down

PoE Ad Hoc questions

- Is a chassis ground always available?
 - Depends on application (generally yes)
- Will we need to support adding/subtracting nodes to/from a live system (for example, a vehicle trailer or customer---installed equipment)?
 - No hot plug-in/out
- What is the maximum length of a PoE segment? PoE max. segment length
 - 15 m (40m optional)
- Will PoE channels be treated differently (e.g., different wire gauge) than non---PoE channels?
 - No

PoE Ad Hoc questions

- Do we need to support daisy-chain configurations?
 - Ambiguous opinion between different contributors
- What is the estimated ratio of powered to unpowered ports?
 - Question needs to be clarified more
- Is PoE as defined in Clause 33 of the current standard adequate for RTPGE?
 - That depends on the number of wires RTPGE will use
- Will vehicles use a mix of Clause 33 and non--clause 33 connections?
 - Yes, very likely
- Will PSE ports be dedicated to a specific load or do they need to be "universal"?
 - According to power classes