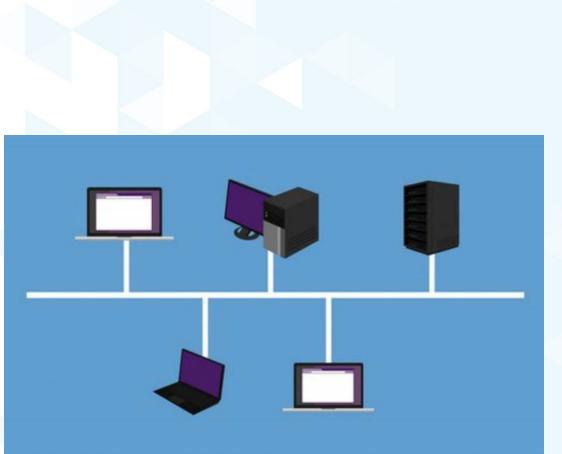
Multidrop Considerations

Heath Stewart

AHEAD OF WHAT'S POSSIBLE™

Multidrop Architecture



Advantages

- Cost-effective to install
 - Less cable required to connect the nodes (vs. Star)
- Provides an easy feasibility to extend or to reduce a network
- Ideal for small network setups

Disadvantages

- More expensive to maintain
- Hot adds may disturb network
- Ideal only for small network setups
- If the backbone (primary) cable fails, the entire network fails
- If the uplink PHY fails, the network becomes isolated
- Bandwidth and power are shared
 - Power overconsumption can bring down network

Sources: http://techgenix.com/network-topology/ Shutterstock

Switched Star Architecture

Advantages

- Electrical failure of one node will not affect the entire network
- Devices can be added, removed, reconfigured, or modified without disturbing the network
- Moderate cabling requirements
- Easy to set up and modify
- Easy to troubleshoot
- Wiring fault effects are isolated

Disadvantages

- The entire network is dependent on the central switch:
 - If the switch fails, then the whole network will be down
- More expensive to install

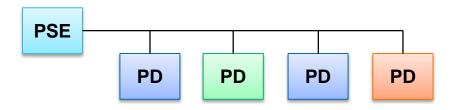
Sources: http://techgenix.com/network-topology/ Shutterstock

Multidrop Issues We Should Address #1

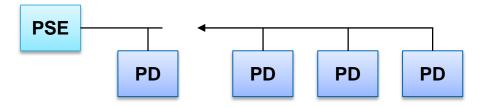
#1 Power Up is a Deliberate Action

- The act of applying power is a deliberate action performed by the PSE
 - Power on is a behavior described by the standard
- In traditional PoE, the PSE does not apply power until the PD is positively identified
 - Non-compliant PoE devices exist which do not perform detection
 - These are known as "Power over Scary"

So...Check Link Prior to Power On

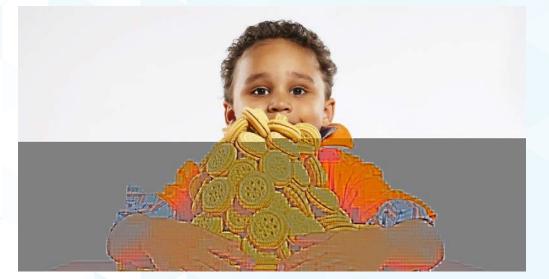

- Do not take the deliberate action of power on without verifying at least one PD is present
 - Multi-drop PoE derivatives must determine at least one valid PD load is present prior to the application of power
- A lack of PD verification is an explicit omission of the standard
 - A simple classification procedure, as proposed in earlier slides, meets this verification requirement

Multidrop Issues We Should Address #2



#2 Expensive to maintain / debug

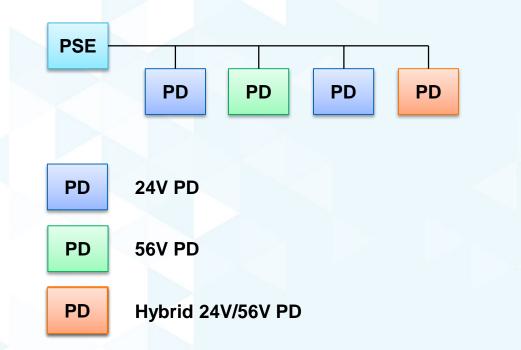
- Device population issues can be difficult to debug
 - eg debugging a very long Christmas light strand



- Hot adds can add multiple PDs at once
 - eg a strand of PDs is added to bus all at once

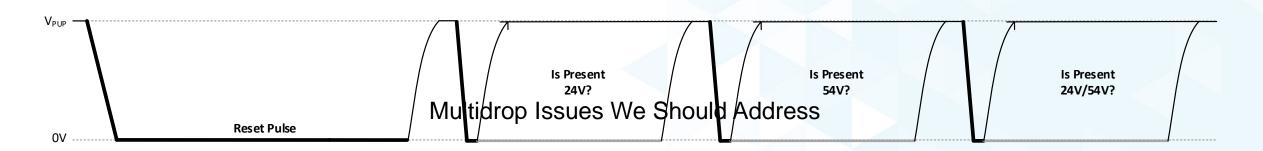
#3 Power is shared

- Overconsumption can bring down network
- Rational limit to PD max power budget preserves network integrity



Source: https://www.crosswalk.com/

Device Population and "Classification as Detection"

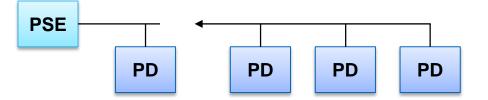

- Proposals for multiple voltage classes are under consideration
- If "hot added", an incompatible PD will silently not power on
- However
 - During subsequent "debug" PSE reboot and prior to power application
 - PD population can be queried at *extremely low effort* to determine
 - if _any_ 24V PDs are on bus
 - if _any_ 48V PDs are on bus
 - if _any_ hybrid PDs are on bus
 - The important question is "are there any PDs of Class X" rather than "how many PDs of Class X are there"

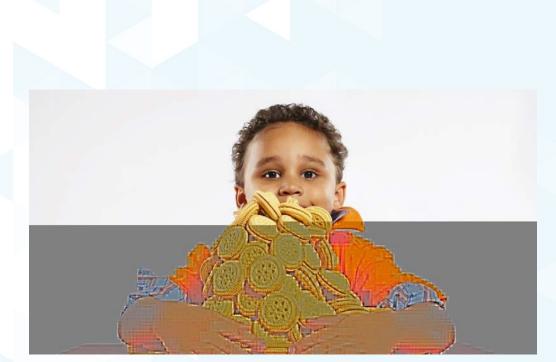
 Solution: Simple class one-hot "vote" allows PSE to determine if one (or more) of a voltage class is present

Sample One-hot Device Population Classification

MASTER	SLAVE	PULLUP

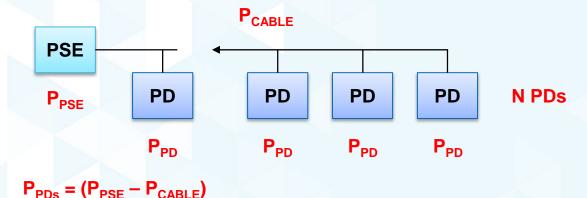
Proposed Objective:


Research voltage compatibility classification prior to Power On


Multidrop Issues We Should Address #3

#3 Power is shared

- Overconsumption can bring down network
- Rational limit to PD max power budget preserves network integrity
- Hot adds can add multiple PDs at once
 - eg a strand of PDs is added to bus all at once



Source: https://www.crosswalk.com/

Hot Adds and Shared Power Budget

- The number of PD nodes is N
 - N is TBD
- Traditionally, PSE output power is limited to 100W or less
 - Limited Power Source
- Risks of overallocation
 - Even if a single PD(1) is present, PD(1) should be limited to 1/Nth of P_{PDS}
 - If PD(1) can claim > 1/Nth of P_{PDS}, then the strand will fail when additional PDs (or strands of PDs) are added
 - Any number above 1/Nth of P_{PDS} decreases reliability of strand during hot adds
 - P_{INRUSH} should be limited to 1/Nth of P_{PDS} (or less)

 $P_{PD} = P_{PDs} / N$

- Solution: Limit P_{PD} to P_{PDS/N} at all times
- Solution: Limit P_{INRUSH} to P_{PDS/N} at all times