

FINISAR[°]

IEEE 802.3 Physical Layers for increased-reach Ethernet optical subscriber access (Super-PON)

Wavelength-Tunable DBR laser for Burst Mode TWDM PON applications

Finisar Corp.

Yasuhiro Matsui, Leo Lin, Daniel Chen, Tsurugi Sudo

September 11-12, 2018 Spokane, WA

- Introduction
- DML for 20km transmission at 10 Gb/s
- 40km reach at 25 Gb/s Chirp Managed Laser technology
- Bust-mode wavelength control by tunable DBR laser
- Path to ~ 50 GHz BW laser
- Summary

Example PMDs

FINISAR

A.

3

Advantages of DBR laser

- Tunable over ~ 12 nm
 - Easily cover 4 x 100 GHz WDM channels
 - Burst mode thermal chirp (~ 50 GHz, ~ micro second) can be easily compensated by wavelength tuning with ~ 0.2 mA current.
- 20km at 10Gb as DML or 200km using CML
 - Cavity effect can suppress undesirable transient chirp and extend the reach.
- High-power
 - 10 mW possible. Power is not limited by laser. It can be as high as driver can get.
- Possible > 25 GHz BW
- Lens-free and isolator-free under development

Basic idea of DBR laser

Rate Equation for laser has something common with predictor-pray relation

Lotka-Volterra equation (1910), study supported by Hudson's Bay Company – fur trading company

of lynx increases after some delay.

When # of snowshoe hare increases..

After showing some oscillation, the balance is reached.

Time

In case of laser diodes

Bad chirp as we all know - transient chirp

Good chirp makes DML as good as "Optical duo-binary"

"Linearized DML" – very flat response with no peaking

- High damping is realized to suppress the Transient chirp by design
- Very flat S21 response is achieved as a result

Transmission performance over 21km

- ➤ -30 dBm sensitivity at 10 km and -31 dBm at 20km at 6.5 dB ER.
- > 10km sensitivity becomes better for lower bias (higher transient chirp helps)
- > 7.5 dB ER increases dispersion penalty (higher transient chirp hurts)
- > 10 dBm fiber <u>coupled</u> power is possible with proper design

Chirp Managed Laser (CML)

Y. Matsui et. al., "Chirp-Managed Directly Modulated Laser (CML)," IEEE Photon Technol. Lett., vol. 18, 2006

CML on PLC platform

Y. Yokoyama et al., European Conference on Optical Communication (ECOC), paper We.1.C.4, 2010. S. Grillanda et al., IEEE J. Lightwave Technol., vol. 35, pp. 607-614, 2017.

AWG filter shape and DML spectrum

- ➢ AWG filter shape: 1-dB BW ~ 22 GHz, 3-dB BW ~ 40 GHz
- Adiabatic chirp ~ 30 GHz
- ER before AWG filter ~ 6.5 dB, after filter ~ 11 dB
- Leak energy into low-freq. Ch. ~ -50 dB

CML based on AWG filter

- Negative offset improves ER to > 11 dB
- Sensitivity ~ -32 dBm at the best position (-5 GHz offset from the filter center)
- Filter loss increases with offset (1-dB loss BW ~ 22 GHz).
- Better performance than DML from -15 GHz to + 5 GHz
- > 40 km possible

25.6Gb CML transmission experiment over 66km

• BB can be improved if the filter locking position is optimized for 0-40km range.

66.2 km

Thermal Chirp Compensation basics for DBR laser

TCC over longer time range (~ 250 ns)

Without TCC

With TCC

Thermal chirp spectrum-domain testing

Time averaged optical spectrum narrows with TCC \geq

250 ns pulse

40us pulse

45ms pulse

FINISAR[°]

Evolution of modulation bandwidth

Book Chapter: "Datacenter Connectivity Technologies: Principles and Practice", Y. Matsui

1310-nm AI-BH short-cavity DR laser

- AllnGaAs-based strained-MQW structure
- \succ 50 μ m length DFB section
- DBR section 200 μm
- HR on back facet of DFB section
- PN-blocking buried-heterostructure (BH)
- Double channel and BCB under pad to reduce capacitance (RC cutoff ~ 22 GHz)

PN current blocking

2016 OFC PDP, Y. Matsui et al.

Detuned-loading effect in DBR laser

63 GHz BW DR laser

106.2 Gb/s PAM4 eye diagram

53.1 Gb/s NRZ

106.2 Gb/s PAM4

DR laser BW is much faster than the BW of AWG. Combined BW does not change as DML is modulated. This suppresses non-linear behavior of DML.

Conclusions

- DML chirp tailored for 20km transmission was described.
- 60km transmission at 25Gb/s using CML demonstrated
- Wavelength tunable over ~ 12 nm
- Fiber-coupled power can be ~ 10 dBm
- Fast tuning in DBR is used to suppress the thermal wavelength drift in bust mode.
- DML can be fast 60 GHz BW demonstrated at 1310nm
- Lens-free and isolator-free DML under development