Bifrost communications

Jesper Bevensee Jensen

QUASI-COHERENT DETECTION FOR SuperPON

...Enabling low power transmitters and long reach 10 Gbps and 25 Gbps with dispersion compensation...

BIFROST COMMUNICATIONS APS

www.bifrostcommunicatins.com

Spin-out from Technical University of Denmark

Jesper Bevensee Jensen CTO, Founder jbj@bifrostcommunications.com

Outline

- 1. What is Quasi-Coherent Detection?
- 2. SuperPON Requirements
- 3. Going to 25 Gbps with CD compensation built into the receiver
- 4. Lower EDFA gain and ONU launch power requirements reduce SuperPON cost where it matters
- 5. Outlook

Digital Coherent Receiver – The Conventional Way

- 2 Polarizing beam splitters
- 2 pcs. 90-degree hybrid couplers (8 pcs. 3dB couplers)

Bifrost Simplified Quasi-Coherent Receiver

- Only very little equipment (2 PDs, 1 PBS, 1 pcs. 3 dB coupler)
- No DSP (Analog signal processing chip only consumes 10 mW)
- Vast simplification
- Coherent potentially ready for low cost access networks

Experimental Validation @ 10 Gbps

- SFP transmitter, 1550 nm wavelength, 8 dB extinction ratio
- 15 dBm LO power, RIN = -145 dBm/Hz
- 33 GHz PD bandwidth (for burst mode, 14-18 GHz needed for continuous mode)

1550nm EML transmitter

-35 dBm sensitivity No degradation after 40 km fiber

15 dB better than PIN DD3-6 dB better than APD DD

10 Gbps BER B2B and after 40 km SSMF

First experimental results – 1550 nm

25 Gbps - B2B - Matlab demodulation to NRZ

- -30 dBm B2B sensitivity with full transmitter bandwidth
- 2 dB penalty from reducing transceiver bandwidth to 12 GHz
- Eye diagram after 20 km SSMF completely distorted

Receiver filter optimized for NRZ

Receiver filter optimized for EDB

25 Gbps Chromatic Dispersion Compensation

Optics modelled in VPI using datasheet values

- 10 MHz LO linewidth, -145 dB/Hz LO RIN, 15 dBm LO power
- PD 3-dB bandwidth = 40 GHz
- PD responsivity 0.7 A/W
- TX Extinction ratio 8dB (1550 nm EML)

Bifrost ASIC EM simulated in Microwave Office

Better than -30 dBm sensitivity B2B and after 20 km SSMF

Quasi-Coherent SuperPON

Super-PON Objectives

To support a passive point-to-multipoint ODN with a reach of at least 50 km, and with at least 1:64 split ratio per wavelength pair

- At least 16 wavelength pairs for point-to-multipoint PON operation
- Support the MAC data rate of 10Gb/s downstream
- Support the MAC data rates of 2.5Gb/s and 10Gb/s upstream
- Tunable transmitters

Conventional Optics requirements (RX sens -28.5 dBm)

- ONU launch power 4-9 dBm
- EDFA Gain (US) 14.5 dB

Optical CD comp in MUX needed for 25 G and 10 G DML

Bifrost QC-optics Requirements (RX sens -35 dBm)

- ONU launch power 0-5 dBm
- EDFA gain (DS) 12 dB

CD comp can be built into receiver cost-free and loss-less

SUMMARY

Quasi-coherent	25 Gbps	Status	SuperPON
Up to -35 dBm sensitivity @ 10 Gbps Up to -30 dBm sensitivity @25 Gbps (B2B)	20 km C-band transmission CD-compensation in receiver	10 Gbps ASIC ready 25 Gbps ASIC w/CDC Taped-out	Reduced ONU launch power or EDFA gain 2.5G, 10G, or 25G with no DCF