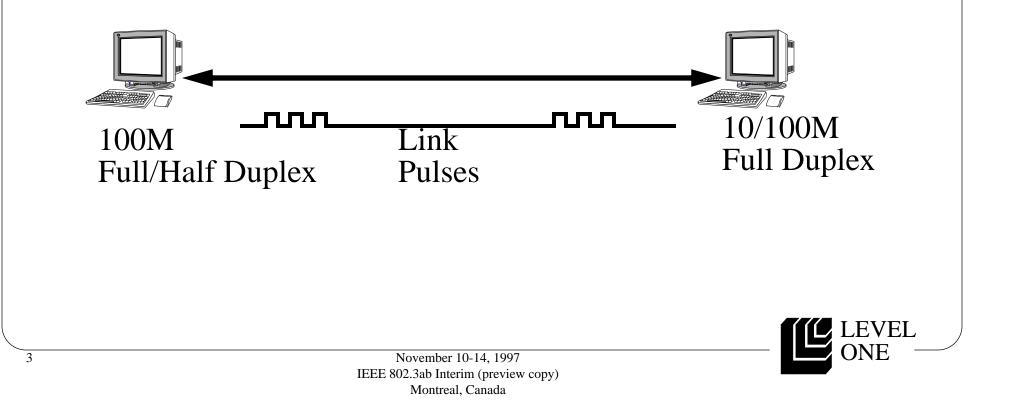
1000Base-T Auto Negotiation

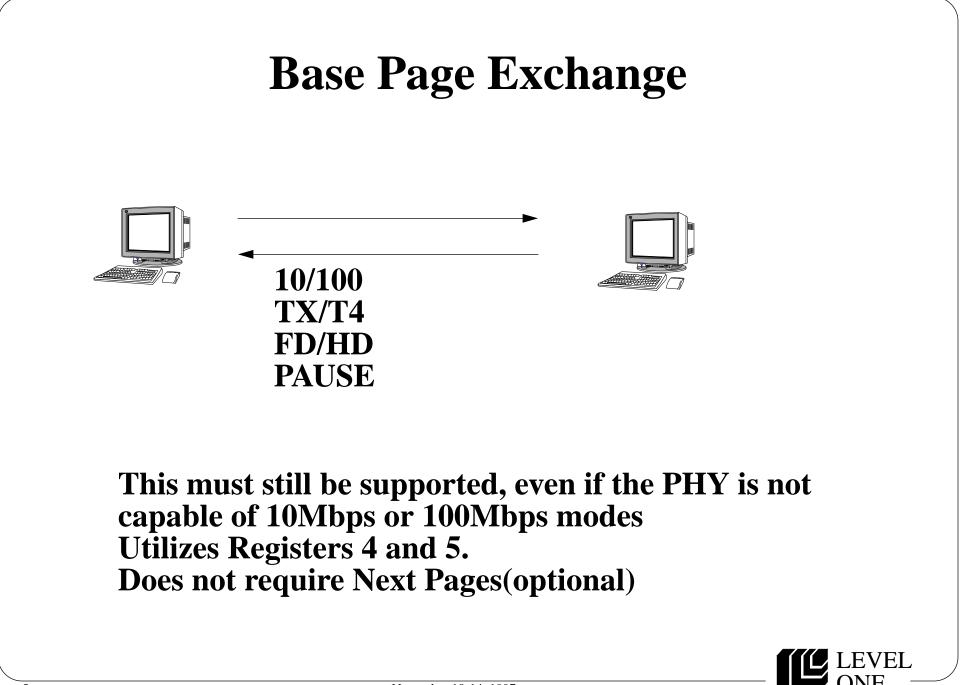
IEEE 802.3ab Meeting Montreal, Canada

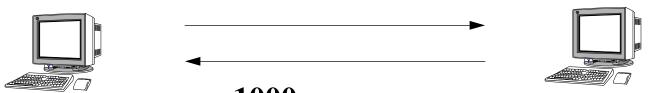
Mark T. Feuerstraeter, Level One, (916)854-2817, mark@level1.com Kishan Konda, Level One, kishan@level1.com Larry Lomelino, Level One,llomelino@level1.com


Overview

- Brief Auto Negotiation Overview
- General Next Page Exchange
- 1000BASE-T Next Page Exchange
- Priority Table
- Registers
- GMII Pin Order

What is Auto Negotiation?


- Method used to exchange information between 2 stations
- Used to Configure operating parameters such as speed and duplex
- Uses 10Base-T Link Pulses for backwards compatibility
- Allows for automatic link establishment without user intervention


Requirements

- Requires the ability to Receive and Transmit 10Base-T Link Pulses
- 10Base-T and 100Base-T support parallel detection, hence Auto Negotiation was optional
- 1000Base-T Requires the use of Auto Negotiation, No Parallel Detection only scheme can be supported.
- Next Page exchanges must be used to convey 1000Base-T information
- Utilizes existing clause 28 scheme Little/No modification required Minimize/do not use new registers

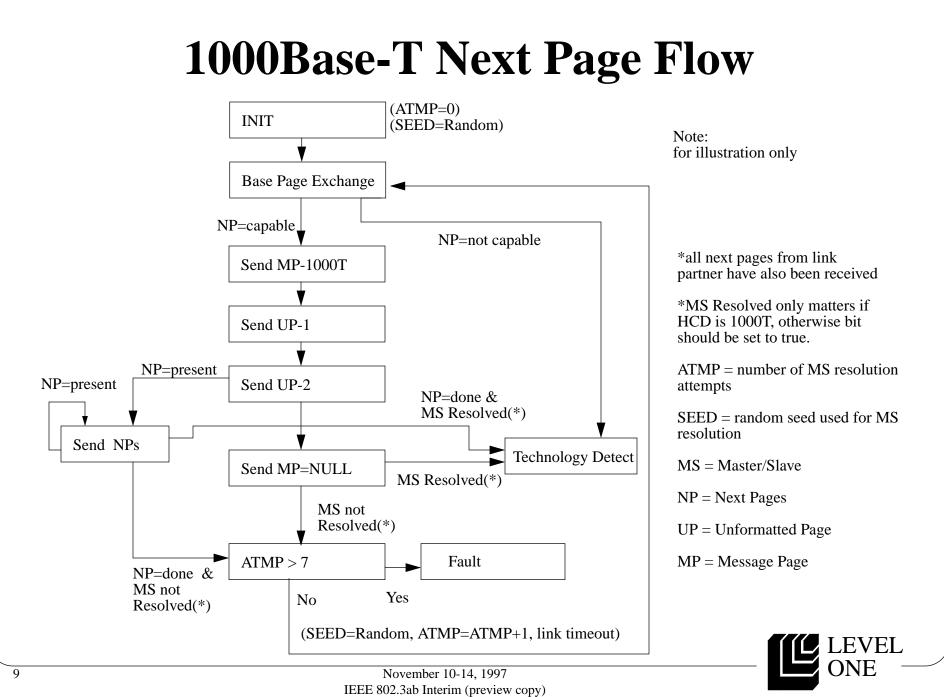
Next Page Exchange

1000 FD/HD ASYM PAUSE MASTER/SLAVE

Utilizes Register 7 for Transmitting and Register 8 for Receiving.

One page at a time is exchanged. Toggle and other bits are used for synchronization.

1000Base-T Next Page Information


- Master/Slave Overide
- Repeater/DTE
- 1000Base-T Full Duplex
- 1000Base-T Half Duplex
- Asymetric Pause
- TX Coding Type
- Master/Slave Random Seed

1000Base-T Use of Next Pages

- Uses the Clause 28 Next Page exchange mechanism.
- Sends 1 Message Code(9) followed by 2 unformatted pages containing the relevant information.
- Scheme does NOT utilize ACK2 bit!
- PHY device must intercept all 1000T Next pages and store them internally for resolution functions.
- PHY device must also source all 1000T Next pages from internal registers.

Montreal, Canada

1000Base-T Master/Slave Resolution

- If both devices want to be Master or Slave a tie breaker is needed.
- Using a random seed, the device with the higher value becomes master.
- A maximum of 7 attempts are made to resolve the Master/Slave status.
- More information is available via 100Base-T2 spec or clause 40

1000Base-T Priority Table

Table 1—Update to 28B.3 Priority Resolution

Priority Level	Technology	
a ** (highest)	1000BASE-T Full Duplex	
b**	1000BASE-T	
С	100BASE-T2 Full Duplex	
d	100BASE-T2	
e	100BASE-TX Full Duplex	
f	100BASE-T4	
g	100BASE-TX	
h	10BASE-T Full Duplex	
i (lowest)	10BASE-T	
** represents changes requested		

1000Base-T Next Page Bit Order

Table 2: Next page data ordering

Bit	MP	UP-1	UP-2
15	NP	NP	NP
14	ACK/Rsvd	ACK/Rsvd	ACK/Rsvd
13	MP	MP	MP
12	ACK2	ACK2	ACK2
11	Т	Т	Т
10	0	Rsvd	SB10
9	0	Rsvd	SB9
8	0	Rsvd	SB8
7	0	Rsvd	SB7
6	0	ASM DIR	SB6
5	0	TX CODING	SB5
4	0	1000T HD	SB4
3	1	1000T FD	SB3
2	0	RPTR/DTE	SB2
1	0	M/S MAN CFG	SB1
0	1	M/S CFG ENAB	SB0

12

Registers Required(1000Base-T)

All standard 10/100 Registers

Next Page Transmit(7) Next Page Receive(8) 1000Base-T Configuration(9) 1000Base-T Status(10) Extended Status(15)

Next Page Transmit

Bit	Name	Description	Type ¹
7.15	Next Page	1 = Additional next pages follow	R/W
	(NP)	0 = Last page	
7.14	Reserved	Write as 0, ignore on read	RO
7.13	Message Page	1 = Message page	R/W
	(MP)	0 = Unformatted page	
7.12	Acknowledge 2	1 = Will comply with message	R/W
	(ACK2)	0 = Can not comply with message	
7.11	Toggle (T)	 1 = Previous value of the transmitted Link Code Word equalled logic zero 0 = Previous value of the transmitted Link Code Word equalled logic one 	R/W
7.10:0	Message/Unfor- matted Code Field		R/W
	= Read/Write Read Only		

Table 3: Auto Negotiation Next Page Transmit Register (Address 7)

Next Page Receive

Bit	Name	Description	Type ¹
8.15	Next Page	1 = Link Partner has additional next pages to send	RO
	(NP)	0 = Link Partner has no additional next pages to send	
8.14	Acknowledge	1 = Link Partner has received Link Code Word from CHEETAH	RO
	(ACK)	0 = Link Partner has not received Link Code Word from CHEE- TAH	
8.13	Message Page	1 = Page sent by the Link Partner is a Message Page	RO
	(MP)	0 = Page sent by the Link Partner is an Unformatted Page	
8.12	Acknowledge 2	1 = Link Partner Will comply with the message	RO
	(ACK2)	0 = Link Partner can not comply with the message	
8.11	Toggle (T)	1 = Previous value of the transmitted Link Code Word equalledlogic zero0 = Previous value of the transmitted Link Code Word equalledlogic one	RO
8.10:0	Message/Unfor- matted Code Field		RO

Table 4: Auto Negotiation Link Partner Next Page Ability Register (Address 8)

1000Base-T Configuration

Table 5: 1000BASE-T/100BASE-T2 Control Register (Address 9)

Bit	Name	Description	Type ¹
9.15:14	Transmit Test mode	Default bit values are "00"	R/W
9.13	Receive Test mode	Default bit value is "0"	R/W
9.12	Master/Slave Config Enable	1=Enable MASTER-SLAVE Manual configuration value 0=Disable MASTER-SLAVE Manual configuration value	R/W
9.11	Master/Slave Config Value	1=Configure PHY as MASTER during MASTER-SLAVE negotiation, only when 9.13 is set to logical one. 0=Configure PHY as SLAVE during MASTER-SLAVE negoti- ation, only when 9.13 is set to logical one.	R/W
9.10	Repeater/DTE	1=Repeater device port 0=DTE device	R/W
9.9	1000T Full Duplex	1=Advertise 1000BASE-T Full Duplex 0=Advertise 1000BASE-T Full Duplex	R/W
9.8	1000T Half Duplex	1=Advertise 1000BASE-T Half Duplex 0=Advertise 1000BASE-T Half Duplex	R/W
9.7	TX Coding	1=Advertise to Link Partner to use 6db transmit coding 0=Advertise to Link Partner to use 3db transmit coding	R/W
9.6	ASM DIR	Advertise Asymetric Pause direction bit. See 37.4 for more details. This bit is used in conunction with PAUSE.	R/W
9.5:0	Reserved	Reserved	R/W

Bits 9.15:9.10 are exactly the same as 100Base-T2 Bits 9.9:9.6 are applicable only to 1000Base-T Bits 9.9 and 9.8 are a subset of register 15

1000Base-T Status

Bit	Name	Description	Type ¹
10.15	Master/Slave config fault	1=MASTER-SLAVE manual configuration fault detected 0=No MASTER-SLAVE manual configuration fault detected	RO
10.14	Master/Slave resolution complete	1=MASTER-SLAVE configuration resolution has completed 0=MASTER-SLAVE configuration resolution has not completed	RO
10.13	Local Receiver Status	1=Local Receiver OK 0=Local Receiver not OK	RO
10.12	Remote Receiver Status	1=Remote Receiver OK 0=Remote Receiver not OK	RO
10.11	LP 1000T FD	1=Link Partner is capable of 1000BASE-T Full Duplex 0=Link Partner is not capable of 1000BASE-T Full Duplex	RO
10.10	LP 1000T HD	1=Link Partner is capable of 1000BASE-T Half Duplex 0=Link Partner is not capable of 1000BASE-T Half Duplex	RO
10.9	LP TX CODING	1=Link Partner requests that 6db coding be utilized 0=Link Partner requests that 3db coding be utilized	RO
10.8	LP ASM DIR	Link Partners Asymetric Pause Direction bit. See 37.4 for map- pings. This bit is used in conjunction with PAUSE	RO
10.7:0	Idle Error Count	Idle Error Count	RO/SC

R/W = Read/Write RO = Read Only

Bits 10.15:10.12 are exactly the same as 100Base-T2 Bits 10.11:10.8 are applicable only to 1000Base-T

Extended Status

Table 7: Extended Status Register (Address 15)

Bit	Name	Description	Type ¹
15.15	1000BASE-X Full	1 = PHY able to perform full-duplex 1000BASE-X	RO
	Duplex	0 = PHY not able to perform full-duplex 1000BASE-X	
15.14	1000BASE-X Half Duplex	1 = PHY able to perform half-duplex 1000BASE-X	RO
		0 = PHY able to perform half-duplex 1000BASE-X	
15.13	1000BASE-T Full	1 = PHY able to perform full-duplex 1000BASE-T	RO
	Duplex	0 = PHY not able to perform full-duplex 1000BASE-T	
15.12	1000BASE-T Full	1 = PHY able to perform half-duplex 1000BASE-T	RO
	Duplex	0 = PHY able to perform half-duplex 1000BASE-T	
15.11:0	Reserved	ignore when read	RO
1. RO = Read Only			

Why Build Mechanism internal to PHY?

- Allows Management-less configuration
- Allows priority resolution to be done internally
- Does not require manual configuration/ intervention
- Minimizes changes to Clause 28
- Utilizes existing NP mechanism

Why not have a register for all LP information?

- Master/Slave information resolution unimportant beyond initial setup
- We have register bits to cover error status
- Would require additional registers
- Repeater/DTE bit is only useful to the link, not the end user

Alternate Solution(not recommended)

- Priority resolution done externally
- Requires manual configuration
- Requires management interaction
- Use Register 0 to set the speed of the device after all NPs have been exchanged
- Then add a bit to register 9 to inform the device to utilize the register 0 configuration values
- Master Slave resolution done externally