4D 4-State 3dB/6dB Transparent Trellis Code for 1000BASE-T

Sailesh K. Rao

Level One Communications, Inc.

IEEE 802.3ab Interim London, Sep. 8-10, 1997

Outline

- Goals
- Current 4D and 24D coding schemes
- The 3dB/6dB transparent 4D 4-state Trellis Code
- Equivalent 16D 2-state Trellis Code interpretation
- Achieving Finite Decoding Delay
- Latency Budgets
- Simulation Results
- Conclusions

Goals

- Allow for conventional DFE/DFSE implementations.
- Use finite-length decoding
 - facilitates use of ISI Cancellers that require dual decoders
- Based on 4D encoding
 - facilitates reuse of PCS principles from 100BASE-T2
- 3dB/6dB Transparency
 - Achieve 3dB nominal coding gain with symbol decoding
 - Achieve 6dB nominal coding gain with sequence estimation.
 - facilitates use of "good" decisions for fast feedback loops such as timing recovery.

IEEE 802 3ab Interim London, Sep. 8-10, 1997

3

Current 4D and 24D coding schemes

- 4D 8-state Trellis Code
 - allows for conventional DFE/DFSE implementations
 - requires long decoding delays especially when used without Decision Feedback Sequence Estimation
 - based on 4D code subsets
 - No Transparency
 - ♦ Meets Goal#1 and Goal#3
- 24D Code
 - difficult to do DFE/DFSE implementations for Baseband line codes
 - * allows for finite length (6 BT) decoding
 - based on 8D code subsets
 - No Transparency
 - Meets Goal#2

Transparent 4D 4-state Trellis Code

- Meeting Goals:
 - Allows for conventional DFE/DFSE implementations
 - Achieves 8BT decoding delay (4BT in Block mode) with full 6dB nominal coding gain.
 - Based on 4D code subsets
 - Achieves 3dB coding gain with symbol decoding and 6dB coding gain with sequence estimation.
 - Meets Goal#1, Goal#2, Goal#3 and Goal#4.
- Reduces complexity of Per-survivor processing by a factor of > 4 over 4D 8-state trellis code.
 - reduces power consumption by ~250mW.
- Provides Error Detection capability for symbol-by-symbol decoded receivers.

IEEE 802 3ab Interim London, Sep . 8-10, 1997

5

The 4D ODD subsets

Y = ESC	+2
X	+1
Y	0
X	-1
Y O	-2

Subset	X-Primary Code (Pair A first)	Y-Primary Code (Pair A first)
D1	XXXY	YYYX
D3	XXYX	YYXY
D5	XYXX	YXYY
D7	YXXX	XYYY

- All four ODD subsets are pair permutations of each other.
- Each ODD subset has 24+54 = 78 code points
- Each ODD subset has either
 - one X point and 3 Y points, or
 - one Y point and 3 X points
- Each ODD subset is uniquely determined by its "unlike" pair.

LEVEL ONE

The Trellis Diagram - Single Stage

The Data Encoding Method

- Encoding is done in blocks of 4 Bytes.
 - 7-bits select subset pattern for the 4-stage trellis
 - 25-bits select a point within the 4 subsets.
- Designate one point in each subset as Delimiter point and code 25 bits using the other 77 points on 4 subsets.
 - ♦ No. of points needed = 2²⁵ = 33,554,432
 - ♦ No. of points available = 77⁴ = 35,153,041
- Ensures 3dB coding gain with symbol-by-symbol decoding since only ODD subsets are used.

IEEE 802 3ab Interim London, Sep. 8-10, 1997

9

Partitioning an ODD subset

- Each ODD subset with 78 points can be partitioned as:
 - S-ESC Code points (Points with zero or one ESC symbols) = 64 points
 - Points with No ESC symbol = 32 points
 - Points with 1 ESC symbol = 32 points
 - M-ESC Code points (Points with two or more ESC symbols) = 13 points
 - Points with 2 ESC symbols = 12 points
 - ESC, ESC, ESC, -1, a 3-ESC point = 1 point
 - Delimiter Code point
 - ESC, ESC, ESC, +1, a 3-ESC point = 1 point
- Delimiter Code point is not used for data transmission.

Mapping 25bits to Symbols

- Case 1: BIT[24] = 0: (Only S-ESC points)
 - Code BIT[23:0] using S-ESC code points on the 4 subsets.
- Case 2a: BIT[24] = 1, AND BIT[23:20] <= 12: (One M-ESC subset)
 - Use BIT[23:20] to code one of 13 M-ESC point in M-ESC subset.
 - Use BIT[19:18] to determine position of M-ESC subset.
 - Use BIT[17:0] to code S-ESC points in other three S-ESC subsets.
- Case 2b: BIT[24] = 1, AND BIT[23:20] >= 13: (Two M-ESC subsets)
 - Use BIT[23:19] to determine one of 6 combinations of 2 M-ESC subset positions.
 - Use BIT[18:12] to code one of 128 points from 12X12 2-ESC constellation of the two M-ESC subsets.
 - Use BIT[11:0] to pick S-ESC points in the other two S-ESC subsets.

IEEE 802.3ab Interim London, Sep. 8-10, 1997

11

LEVEL ONE

Mapping 7bits to Subsets

- Use BIT[31:25] and the previous state bit, PS, to determine subset pattern and New state bit, NS.
- NS = BIT[31]
- PS is set to 0 during Idle and at End of Packet.

	Index, 2	Index, 1	Index,0	Trellis State
Subset_0	PS+BIT[26]	віт[25]	1	ВІП[26:25]
Subset_1	ВІП28]+ВІП26]+ВІП25]	ВІТ[27]+ВІТ[26]	1	ВІП[28:27]
Subset_2	віπ30]+віπ28]+віπ27]	ВІТ[29]+ВІТ[28]	1	віπ[30:29]
Subset_3	віπ30]+віπ29]	ВІТ[31]+ВІТ[30]	1	0 ΒΙΠ[31]

Note: the recovered BIT[31:25] at the receiver can be read off from the states of the best surviving path.

This mapping corresponds exactly to the 4-stage trellis on Page 8.

LEVEL ONE

Error Detection in Symbol-by-symbol Decoding

- Assume SUB{0:3}[2:0] are the received ODD subsets in symbol-by-symbol decoding for the current block.
- Let PS be the previous state bit (PS=0 during idle).
- Then, BITS[31:25] are recovered as follows:

Recovered Bits	MS Bit/Error?	LS Bit
ВІТ[26:25]	PS+SUB0[2]	SUB0[1]
ВІТ[28:27]	ВІП[26]+ВІП[25]+SUB1[2]	BIΤ[26]+SUB1[1]
ВІТ[30:29]	ВІП[28]+ВІП[27]+SUB2[2]	BIT[28]+SUB2[1]
{Error? BIT[31]}	ВІ∏30]+ВІ∏29]+Ѕ∪В3[2]	ВІТ[30]+SUB3[1]

The New State Bit, NS = BIT[31].

IEEE 802 3ab Interim London, Sep. 8-10, 1997

13

Equivalent 2-state 16D Trellis code

- Define 16D subsets as follows
 - W₀ comprises all paths from R₀ to S₀.
 - W₁ comprises all paths from R₀ to S₁.
 - W₂ comprises all paths from R₁ to S₀.
 - ♦ W₃ comprises all paths from R₁ to S₁.
- MSED between W_i and W_i for i != j is 2.
- MSED between points in W_i is 4 for all i.
- The equivalent 2-state 16D trellis code:

14

The finite decoding delay follows.

IEEE 802.3ab Interim London, Sep. 8-10, 1997

Finite Decoding delay

Case 1: Both paths have merged at previous node

- Previous 16D symbol has been decoded
- Case 2: Both paths have not merged at previous node

The worse path is discarded since it is distance of >=4 away from winning path.

Both 16D symbols have been decoded!!

IEEE 802.3ab Interim London, Sep. 8-10, 1997

15

Data Packet Encapsulation Options

- 4-byte Block Trellis Encoding starts at Start Packet Delimiter.
 - Terminated to state 0 at End Packet Delimiter
 - Idle uses only D1 subset code points
 - Data uses all ODD subset code points

• 4-byte Block Trellis Encoding throughout Idle/Data

16

IEEE 802 3ab Interim London, Sep. 8-10, 1997

LEVEL ONE

Latency Budgets

- ISI Canceller Solution (Rockwell presentation from Maui)
 - Encoding delay stays the same (?)
 - Decoding delay for F1 is 8BT.
 - Decoding delay for F2/F3 is 4BT assuming block processing.
 - Overall latency stays the same as with 24D code.
- Conventional DFE Solution
 - Encoding delay increases by 4BT.
 - Decoding delay decreases by 4BT.
 - Overall latency stays the same with respect to current 4D code.

IEEE 802.3ab Interim London, Sep. 8-10, 1997

17

Simulation Results

Evaluation with Ideal DFE and AWGN

Noise Level (dBs)	SER@Input (4D Symbols)	SER@Output (Conventional 4D 8-state Trellis Code)	SER@Output (Transparent Code)
-7.0dB	0.093	0.001	0.0013
-8.0dB	0.043	5E-5	8E-5
-9.0dB	0.016	~1E-6	~1E-6

Evaluation with Full Per-Survivor Processing and AWGN

Noise Level (dBs)	SER@Input (4D Symbols)	SER@Output (Conventional 4D 8-state Trellis Code)	SER@Output (Transparent Code)
-7.0dB	0.093	0.012	0.004
-8.0dB	0.043	8E-4	4E-4
-9.0dB	0.016	1E-5	5E-6

IEEE 802 3ab Interim London, Sep. 8-10, 1997

Conclusions

- 4D 4-state trellis code combines the best properties of conventional 4D 8-state trellis code and 24D block code (for passband systems).
 - 3dB coding gain with symbol by symbol decoding
 - ♦ 6dB coding gain with sequence estimation
 - ♦ 8BT decoding delay for full 6dB gain
 - 4BT decoding delay in block mode operation
- Reduces complexity of per-survivor processing due to
 - reduced number of states (4 vs. 8).
 - automatic pruning of survivor paths to 2 once every 4 stages.
 - reduces power consumption of implementation.
- Built-in Error Detection capability for symbol by symbol decoded receivers.

IEEE 802 3ab Interim London, Sep. 8-10, 1997

19

