EVITESSE[®] Making Next-Generation Networks a Reality.

Power Considerations IEEE OIF Liaison

George Noh July 8, 2010 Concall

Outline

Dual Power Supply Proposal for New Connectors

 \cap

- Power of DFE design used as a CDR
- Summary

Connector pin definition

- The OIF CEI Workshop in Santa Clara (February 2010) highlighted power density in the module as a large concern.
- Leverage State of the Art
 - Latest CMOS reduces geometries and IC core power with lower power supply voltages
 - Reduce heat density in module
 - Reduce real estate in module
- ▶ BUT....
 - Current Module Pin assignments not provisioned for lower power supplies

Dual Power Supply Proposal

Propose dual power supply into new connector pin definition: 1.2V and 3.3V

- Avoids using DC-DC regulator for CMOS CDR technology
 - Extra power
 - Extra real-estate including support components
- 1.2V works well for optical AND copper modules

EVITESSE[®] Making Next-Generation Networks a Reality.

Power of DFE Design

Power of DFE design used as a CDR

- Equalizer can be designed to shut off unused DFEs w/ ~10% penalty per unused tap
- Unused DFE taps are essentially free

VITESSE

Summary

- Propose dual power supply into new connector pin definition: 1.2V and 3.3V to take advantage of lower power CMOS IC in the module
- DFE architecture can make unused DFEs turn off with negligible power

