100 Gb/s per Lane for Electrical Interfaces and PHYs
CFI Consensus Building

CFI Target: IEEE 802.3 November 2017 Plenary
Objective

- Build consensus of starting a study group investigating a “100 Gb/s per lane for electrical interfaces and PHYs” project

- We do not need to:
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose a solution
 - Create a PAR or 5 Criteria
 - Create a standard

- Anyone in the room may vote or speak
Motivation for 100 Gb/s per Lane

With next steps in Ethernet, comes the needed next step in interfaces.

- Faceplate density
- Chip breakout
- System throughput

They are all tied together!

*Web-scale data centers and cloud based service are presented as leading applications
Electrical interfaces come in many shapes and sizes.

Copper lives on... we may need to open our minds to what a channel is!
Tonight’s Meeting

• To present the market need, technical feasibility, and Why Now?? of 100Gb/s per lane of electrical signaling.

• To gain consensus towards Thursday’s Call-for-Interest.

• We are NOT discussing specific implementations or objectives – these are just some of the reasons that we need a study group!
Market Drivers

for 100 Gb/s per lane for Electrical Interfaces

Go Faster
to
Go Denser
to
Continue to Grow.
What Are We Talking About?

Consider how many instances of the interface can exist in the system…
Historical Perspective Shows What’s Coming

- Historical curve fit to highest rate switch products introduced to market (blue squares)
- Single ASIC IO capacity doubling every ~ 2 years
IO Escape forcing transition to higher lane speeds

- ~70mm package is a current BGA practical maximum (due to coplanarity / warpage)
- This will force BGA devices with >14Tb/s of aggregate bandwidth to transition to lane rates of higher greater than 50G (possibly 100G?)

IEEE 802.3 September 2017 Interim, NEA Ad Hoc, Charlotte, NC
Backplane is easily system bottleneck

Existing Systems
- Defined backplane and pin count
- No choice but to put more signal across the pin

New Systems
- Can tune pitch and pin count
- However, there is limited gain left in this mechanical density

backplane speed needs to scale for bandwidth to grow
The Current Ethernet Family (100 Gb/s and Above)

<table>
<thead>
<tr>
<th></th>
<th>Signaling (Gb/s)</th>
<th>Electrical Interface</th>
<th>Backplane</th>
<th>Twin-ax</th>
<th>MMF</th>
<th>500m SMF</th>
<th>2km SMF</th>
<th>10km SMF</th>
<th>40km SMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100GBASE-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CAUI-10</td>
<td>CR10</td>
<td>SR10</td>
<td>10X10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>CAUI-4 / 100GAUI-4</td>
<td>KR4</td>
<td>CR4</td>
<td>SR4</td>
<td>PSM4</td>
<td>CWDM4 CLR4</td>
<td>LR4</td>
<td>ER4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100GAUI-2</td>
<td>KR2</td>
<td>CR2</td>
<td>SR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DR</td>
</tr>
<tr>
<td>200GBASE-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>200GAUI-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>200GAUI-4</td>
<td>KR4</td>
<td>CR4</td>
<td>SR4</td>
<td>DR4</td>
<td>FR4</td>
<td>LR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400GBASE-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>400GAUI-16</td>
<td>SR16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>400GAUI-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DR4</td>
</tr>
</tbody>
</table>

Includes Ethernet standards in development

Underlined – indicates industry MSA or proprietary solutions

Blue – indicates the areas of interest for this CFI

IEEE 802.3 September 2017 Interim, NEA Ad Hoc, Charlotte, NC
Technical Feasibility
for 100 Gb/s per lane for Electrical Interfaces

Go Faster
to
Go Denser
to
Continue to Grow.
It’s time to open the toolbox again…

From the *100GbE Electrical Backplane / Cu Cabling Call-For-Interest* consensus building presentation, November 2010
Solutions for each generation

- **1995**:
 - PAM2/NRZ modulation
 - "FR4" (~8.8 dB at 0.6 GHz)
 - 25 m cable

- **2000**:
 - +Fixed transmitter de-emphasis
 - "FR4" (~16 dB at 1.6 GHz)
 - 15 m cable

- **2005**:
 - +Decision feedback equalization assumed
 - +Transmitter training
 - "Lightweight" FEC
 - 7 m cable

- **2010**:
 - +"Improved" FR4 (~25 dB at 5.2 GHz)
 - +Tighter crosstalk/impedance control

- **2015**:
 - +PAM4
 - +Additional transmitter tap
 - +Configurable precoding
 - +"Stronger" reference receiver
 - +Tight crosstalk/impedance control

- **2020**:
 - + ~30 dB at 13.3 GHz
 - +Tighter crosstalk/impedance control
 - 3 m cable

- **2025**:
 - +"Stronger" reference receiver
 - +"Stronger" Reed-Solomon FEC
 - (PAM4 introduced)

IEEE 802.3 September 2017 Interim, NEA Ad Hoc, Charlotte, NC

* Dates are approximate
Different constraints for different applications

Chip-to-module
- “Coexistence” with defined PHYs, FEC, PCS?
- What is the minimum insertion loss that supports useful topologies?
- Consider improved PCB materials, PCB vs. cable, improvements in impedance/noise control?

Chip-to-chip and “backplane”
- What is the minimum insertion loss that support useful topologies?
- Consider improved PCB materials, PCB vs. cable, improvements in impedance/noise control?

Cable
- What is the minimum useful reach?
- Consider “middle-of-rack” topologies?

Apply signal processing to meet the needs of each application
The discussion is already underway

From the proceedings of the IEEE 802.3 New Ethernet Applications ad hoc

System considerations
Channel options
Higher-speed SerDes

Reduce Channel Length

Use Lower Loss Channel

IEEE 802.3 September 2017 Interim, NEA Ad Hoc, Charlotte, NC
Technical feasibility summary

• Rich signal integrity and signal processing toolbox that can be applied to the problem of “100 Gb/s per lane electrical signaling”
• We must be mindful of the different needs for different applications
• We have done this many times before
• The discussion is already underway
Why Now???

100 Gb/s per lane of Electrical Interfaces

Go Faster to Go Denser to Continue to Grow.
The Road Map of Port Rates - next logical step

- 100G/lane is coming...
 - 100G/lane optics are here
 - OIF/Inifinband are working on this
- We need study and frame it NOW so the industry can plan

Follow the SERDES
The Interest is Here

Straw Poll #2
- Is there interest in developing AUI's based on 100 Gb/s electrical signaling per lane?
 - Results
 - Yes – 43
 - No – 2
 - Maybe – 15

Straw Poll #3
- Is there interest in developing Backplane / Copper Cable PHYs based on 100 Gb/s electrical signaling per lane?
 - Results
 - Yes – 18
 - No – 10
 - Maybe – 20

Straw Poll #1
- I would support development of a CFI that includes:
 a) new backplane PHY,
 b) new Passive Copper Cable PHY
 c) Chip-to-chip (C2C AUI)
 d) Chip-to-module (C2M AUI)
 e) other
 f) not at this time,
 g) none of the above
 - Results
 a) 32
 b) 26
 c) 40
 d) 48
 e) 0
 f) 2
 g) 0

March 2017**

Straw Polls

May 2017*

Taken from NEA Ad Hoc unapproved Minutes
Summary

• 100 Gb/s is the next step on “Follow the SerDes” and continues existing market trends

• We’ve moved to the “unknown” before and the industry survived.

• Technical details need to be rebalanced for the next speed.

• Impact of 100 Gb/s Electrical Signaling is wide across the Ethernet Family

• Let’s form a Study Group!!
Thank You!

Go Faster to Go Denser to Continue to Grow.