200 Gb/s per Lambda Optical: Why, When, and How? Ilya Lyubomirsky, Inphi Corp. and Xiang Zhou, Google

IEEE 802.3 NEA Ad Hoc, Hawaii, Nov. 2019

Introduction

- 200 Gb/s per Lambda optical modules will be needed in 3-4 years
- Applications will include 800G FR4 and 800G DR4
- Lower optical module cost is a major driver for 4x200G vs. 8x100G
- Advancements in DAC/ADC, DSP, and optical component technology are on pace to support 200G per lane

Why?: To Meet DCN Bandwidth Growth Needs

Aggregate Google regular server traffic increased 50x from 2008 to 2014

Ref: "The Datacenter as a Computer", 3nd edition, Luiz Barroso, etc.

- 800Gb/s pluggable module (OSFP/QSFP-DD) needed for Large DCN (2023/2024)
 - From TOR to Aggregate switch connections
 - From Aggregate to Spine Switch connections
 - Dedicated high-BW ML Inter-Chip Interconnection

Exponential growth of Google ML applications

Why?: To lower 800Gb/s optical module cost

- 200Gb/s PAMn technology enables lower-cost 800Gb/s optical modules
 - Half optical components compared to 100Gb/s PAM4
 - Lower or similar power with 5nm CMOS

800G MSA

Source: http://www.gazettabyte.com/home/2019/9/18/companies-gear-up-to-make-800-gig-modules-a-reality.html

8x100GbE, 2x400GbE

"The MSA members believe that for 25.6Tbps and 51.2Tbps switching silicon, 800-gigabit interconnects are required to deliver the required footprint and density," says Maxim Kuschnerov, a spokesperson for the 800G Pluggable MSA.

LightCounting <u>Mega Datacenter Optics</u> <u>report</u> suggests that Cloud companies will need 800G modules by 2023-2024 in order to keep up with bandwidth growth inside their datacenters. We also expect that 51Tbps switching ASICs will be available by that time.

Source:https://www.lightcounting.com/News_091019.cfm

- State-of-art DAC/ADC bandwidth ~ 45 GHz is sufficient for 200G based on higher order PAM
- Experimental research published in ECOC/OFC 2019 demonstrate technical feasibility for 200G per lane
- Low latency/low power higher gain FEC

ADC/DAC Technology (OECC 2019)

ADC/DAC and ASIC technology trends

Tomislav Drenski⁽¹⁾, Jens C. Rasmussen⁽²⁾

(1) Socionext Europe GmbH, 3 Concorde Park, Concorde Road, Maidenhead, SL6 FJ4, UK

(2) Socionext Europe GmbH, Pittlerstr. 47, 63225 Langen, Germany

Source: Optoelectronics and Communications Conference, Fukuoka, Japan, 2019

Year	2010	2012	2014	2016-17	2018-19	2020-21			
		ERS Next Generations							
POWER (MAX)	<2W/channel	<1.5W/channel	~1W/channel	<1W/channel	<<1W/channel	TBC			
RESOLUTION	8-bit	8-bit	8-bit	6-8-bit	6-10 bit	6-10 bit			
CONVERSION RATE	56GSa/s	55-65GSa/s	55-92GSa/s	34-128GSa/s	34 to >140GSa/s	34 to >160GSa/s			
ENOB	5.5	>5.7	>6	5.5 to 6.5	5.5 to > 8.5	5.5 to >8.5			
BW	>16GHz	>19GHz	>26GHz	>35GHz	>42GHz	>49GHz			
ASIC RELATED									
TECHNOLOGY*	65nm CMOS	40nm CMOS	28nm CMOS	16nm FinFET	7nm FinFET	5nm FinFET			
DIGITAL GATES (DSP)	>50M	>70M	>200M	>400M	>1000M	>1500M			
ADDED EFATUDES			1/2 & 1/4 rate,						
ADDED FEATURES	-	-	ASV	ASV	ASV, others	ASV, others			
PACKAGE SIZE	35x35mm	37.5x37.5mm	37.5x37.5m	25x25mm	≤25x25mm	≤25x25mm			
COHERENT APPLICATION	100Gbps	200Gbps	400Gbps	1Tbps	2Tbps	≥2Tbps			

Technology*: CMOS = complementary metal-oxide-semiconductor // FinFET = Fin Field Effect Transistor

High Speed EML Technology (ECOC 2019)

High Speed InP Lasers for 400GbE Kazuhiko Naoe

Lumentum Japan, Inc., Datacom Business Unit 4-1-55 Oyama, Chuo-ku, Sagamihara, Kanagawa, 252-5250, Japan

Fig. 2 DC extinction curves from 20°C to 85°C

Fig. 3 E/O response at 50°C, EA bias of -1.0 V

200G PAM System Demonstration (ECOC 2019)

EXPERIMENTAL COMPARISON OF MODULATION FORMATS FOR 200 G/λ IMDD DATA CENTRE NETWORKS

Jinlong Wei^{1*}, Nebojsa Stojanovic¹, Liang Zhang¹, Stefano Calabrò¹, Talha Rahman¹, Changsong Xie¹, and Gabriel Charlet²

¹Huawei Technologies, European Research Center, Riesstraβe 25, 80992 Munich, Germany ²Huawei Technologies French Research Center, 20 quai du point du jour, 92100, Boulogne-Billancourt, France

200G PAM System Demonstration (continued)

Fig. 3 BER versus receiver optical power (ROP) for 90-Gbaud PAM-6 system.

Format	224G	225G	212G	212G
	DB	PAM-6	2D-	DMT
	PAM-4		PAM8	
1 km ROP	-9 dBm	-9 dBm	-8.6	-8.4 dBm
sensitivity			dBm	
FEC OH	12%	12%	5.9%	5.9%
DSP	DPD	DPD,	DPD,	IFFT/FFT
	DB FFE,	FFE	FFE,	FFE,
	DB-MLSE		TCM	TCM

Table 1 Summary of performance and FEC/DSP requirement

(b) After 1 km SMF

Fig. 4 BER versus ROP of each scheme for the (a) optical BtB, and (b) 1 km SMF cases.

Low Latency/Low Power Higher Gain FEC

Source: B. Smith, V. Shvydun, J. Riani, and I. Lyubomirsky, "Next Generation PON and Data Center Interconnect: Exploring Synergies on FEC," IEEE Summer Topical, July, 2019

Conclusions

- Market demand in US and Asia exists for 800G optical modules in 2023-24, as evidenced by exponential growth in bandwidth demands for server and ML applications
- 200G per lane optics will be the lowest cost solution for 800G
- Advancements in ~ 100 Gs/s ADC/DAC and optical component technology will enable 200G based on higher order PAM