
Polarization Mode Dispersion -
David Dolfi
Agilent Technologies

Version 2 - Corrects for an error in eq (5) of 1st Version

Problem - A digital binary fiber optic link has the following specs:

Signaling rate: 10.3125 Gbaud
Fiber: SMF, per IEC 793-2;1992 type B1
Link length: 49 km
Tx laser ctr wavelength: 1550 nm
PMD parameter (Dp): 0.5 ps/sqrt(km)

Calculate the value of time domain pulse spreading, in psec, due to PMD alone, than can
occur with a probability of 10-12

In order to answer Vipul’s problem, I will utilize a first principles derivation using the
PMD impulse response.  This is consistent with the approach we have used in the Gb
Ethernet spreadsheet model.  While I shall only calculate the problem above, this
approach can easily be incorporated into the model to give the PMD contribution to the
system impulse response and its resulting ISI penalty.

Impulse response for polarization mode dispersion (PMD) in single mode fibers:

The chromatic dispersion contribution to the fiber bandwidth for single mode fiber (SMF)
is identical in form to that of the multimode case.  For the modal bandwidth contribution,
however, the spatial modes of the multimode fiber are replaced by the two orthogonal
principal polarization states (PPS) of the SMF, and the difference in signal propagation
delay between them is referred to as polarization mode dispersion (PMD).  This is
normally specified in fiber spec sheets by a PMD dispersion parameter, Dp, with units of
psec/km1/2, which represents the mean delay difference between the two PPS’s for a km
of propagation distance.  However, the particular polarizations of the PPS’s of the fiber
are not constant in time, and the actual delay difference between them can be larger or
smaller than this with some particular probability distribution.  In addition, the amount of
input power that couples to each PPS is also non-deterministic, and also described by
some suitable probability distribution.  We will consider both of these effects
simultaneously.

Assume that for a given fiber, the delay difference between the principal polarization
states is some time τd, and that the power coupled into the two states (normalized to
unity) is given by r and (1-r) respectively.   The resulting PMD "impulse response" of the
fiber, h(t), would be a pair of delta functions with weightings appropriate to their
respective powers, ie:

(1a)                      /2)t(r)-(1/2)t(rh(t) dd τ+δ+τ−δ=



where the time origin has been chosen half way between the delay times of the two states.
Note that h(t) is properly normalized in the sense that:

In what follows we will refer to the two principal polarization states which arrive at times
± τd / 2 as PPS(±), respectively.

The rms width of this impulse response, σ∆, can be readily calculated:

A pulse pi(t,σo) launched into a fiber having the above PMD impulse response will result
in an output pulse po(t,σL) which is the convolution of the input pulse with the impulse
response above, ie:

The parameters σo, σL are the rms widths of the input and output pulses, respectively.
We assume that the input pulse is normalized in the sense of (1b), but is otherwise
arbitrary.  The rms output width σL is obtained from the root mean square sum of the
input pulse and PMD impulse response, ie:

as can easily be shown by direct calculation.  The pulse spreading is therefore completely
determined by the PMD impulse response rms width:

The solution of our original problem is now reduced to a calculation of the parameter σ∆.
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Derivation of σ∆ and its probability distribution:

We wish to derive a probability distribution for σ∆.  We begin by expressing σ∆ in terms
of an alternate variable, which will make the subsequent mathematics considerably
easier. Rather than the variable r, we will use the angle θ between the normalized Stokes
vector of the input polarization state and the Stokes vector corresponding to the state
PPS(+), ie:

The normalized power r in PPS(+), expressed in terms of this angle, is:

Using (1c) and (3b), we can re-write σ∆ as:

NOTE that the projection of the input power on to the state PPS(+) is given by cos 2 (θ/2),
NOT cos 2 (θ) as for conventional vectors.  This is because, on the Poincare Sphere,
orthogonal polarization states are on opposite sides of the sphere, so that the angle
between them is π (NOT π/2 as for conventional vectors which are orthogonal).  This
accounts for the factor of two in (3b).

As previously mentioned, there are probability distributions corresponding to the
variables τd and θ.  The former has been determined to obey a Maxwellian distribution of
the form:

Note that P(τd) is properly normalized, ie:
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The connection to Dp, the fiber PMD parameter, is given by the following relation:

where L is the length of the fiber.   This relation indicates that the fiber PMD parameter,
Dp, multiplied by the square root of the fiber length is equal to the mean value of the
distribution P(τd).  The last equality in (4c) is obtained by explicit integration to calculate
the mean.  In order to evaluate the probability distribution for θ, consider that the
principal states PPS(±) are random for a given fiber, and vary in a random way in time
over the Poincare sphere, so the state PPS(+) could be at any point on the Poincare sphere
with equal probability.  Since polarization states are distributed uniformly on the surface
of the sphere, the probability of PPS(+) being contained in any given solid angle is
constant.  This implies a probability distribution in solid angle P(Ω) which is constant, ie:

where (θ,φ) are the polar angles relative to the direction of the Stokes vector of the input
polarization.   Integrating P(θ,φ) over φ  to get P(θ):

This distribution is properly normalized:

We are interested in deriving, from these distributions, a probability distribution P(σ∆)
for the parameter σ∆.  We can do this using the relationship (3c) between σ∆, θ, and τd.
Without going into the details of the derivation, we use (3c) to re-express P(θ) in terms of
σ∆ and τd.  This can be combined with P(τd) to yield a joint probability distribution
P(τd,σ∆), given by:

where

(4c)           
8

)(dLD dd

0

dddp σ
π

=τττ=τ= ∫
∞

P

(5c)               1)(d
0
∫
π

=θθ P

                             
ax

a2
ex

2
),(

222
d

2

x

d

2












−σ










π
=στ

−

∆P

(6a)                 
2

a         and         x
dd

d

σ
σ

=
σ
τ

= ∆

(5b)              sin
2

1
),(d)(

2

0

θ=φθφ=θ ∫
π

PP

(5a)               dd),( ddsin
4

1

4

d
d)( φθφθ≡φθθ

π
=

π
Ω=ΩΩ PP



The probability distribution we seek, P(σ∆), is obtained by integrating (6a) over τd:

where a is given in (6a).  The distribution P(σ∆) is properly normalized:

We seek the particular value of σ∆, which we denote σ∆o, such that the occurrence of any
value of σ∆ > σ∆o occurs with a probability Pσ equal to 10-12.  This condition on σ∆o can
be expressed mathematically as:

Substituting (6b) into (6d) and performing the integration yields the following equation
for σ∆o:

where we have used (4c) to substitute for σd.   If we assume the initial rms pulse width σo

is approximately equal to the Baud period B-1, the pulse spreading (2b) is given by:

with σ∆o given by (7a).

Numbers:

Using the parameters supplied in the original problem:

L = 49 km
Dp = 0.5 psec/sqrt(km) = .0005 nsec/sqrt(km)
Pσ = 10-12

B = 10.3125 GBd
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We calculate, from (7a,b):

σ∆o = .00815 nsec = 8.15 psec

∆σ/σo  ≅ .0035

so the spreading corresponding to a probability of 10-12 is about 0.35 %.

ISI Penalty due to PMD:

 We can estimate the PMD contribution to the ISI penalty by assuming that the PMD
impulse response can be approximated by an Gaussian impulse response having the same
rms width.  With this assumption, we can utilize the treatment used in the spreadsheet
model to calculate the ISI penalty due to a Gaussian impulse response:

where erf is the error function.  Using the numbers above, we get:

PISI (dB) = 2.34 x 10-8

ie: the PMD contribution to the ISI penalty is negligible for this particular case.
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