Polarization Mode Dispersion (PMD) & 10GBE

Thomas A. Hanson, Corning Incorporated hansonta@corning.com

PMD & DGD

- The PMD value is the average of differential group delay (DGD) values
- DGD varies randomly with wavelength and time
 - Wavelength could be fast
 - Time generally on the order of hours
- System impairment also varies with State of Polarization

DGD plot

Maxwell DGD distribution

Pulse arrival

Power penalty (Raised Cos)

$$e = 44 \left(\frac{\Delta t}{T}\right)^2 g(1-g)$$

- ε Receiver sensitivity penalty (dB)
- $\Delta \tau$ DGD (ps)
- T Bit period (ps)
- $\bullet \gamma$ Power splitting ratio with values from 0 to 1

Namihira (ITU SG 15 D454)

Actually DGD on hi-bi fiber

Statistical specifications

- Based on concatenated links
- Method 1: 99.99%-tile of the link < 0.5 ps/sqrt(km)
 - 20 cable sections/link
- Method 2: DGDmax<25 ps
 - Convolution of link PMD & Maxwell variation
 - Probability < 6.5•10⁻8</p>
 - 400 km (of 10 km cables)
 - Allows for components (amps & DCs)
- Methods statistically equivalent

Why Method 2?

Hard to determine DGDmax & probability otherwise

Convolution

Probability of Exceeding DGDmax

- Interpreted as potential unavailability
- Penalty, based on DGDmax, is allocated to system design
- If DGD<DGDmax, system is OK to the design
- If DGD>DGDmax, system could go down
 - If everything else is at the limit
- Minutes/year/circuit = 2 * minutes in year * Prob

Equivalence for long length

Problems for 10 GBE

- Links are short (40 km)
- Assuming 10 km cable
 - 4 cable sections, not 20
 - Statistical shrinkage not so great
- Method 2 is conservative for shorter links
 - Default values could be used
- How conservative?
 - Equivalence can used
 - Less conservative value

DGDmax for 10 GBE

Values summary

- Link length: up to 40 km
- Cable section lengths: 10 km or less
 - 4 km is typical
- DGDmax: 19 ps
- Probability: 1.3*10⁻⁷
 - No need to allocate for components
- Min/yr/cir: 0.14 (8.2 s)

What about varying polarization?

- Probability of exceeding the design penalty is decreased by variation of mode splitting ratio
- Depends on ratio of PMD to DGDmax
- Equivalence again:
 - 99.99%-tile on 4 section link: ~ 0.9 ps/sqrt(km)
- Probability is reduced by a factor of 0.23:
 - Leading to 1.9 s/yr/cir potential unavailability

Power splitting ratio probability reduction factor

Summary

- DGDmax:
 - 19 ps => 0.4 dB penalty
- Probability => potential unavailability
 - 1.9 seconds/year/circuit

Relevant Standards (paraphrased titles)

- IEC 60794-3: Outdoor cable Sectional
- ITU G.652: Unshifted single-mode optical fibre and cable
- ITU G.691 High bit rate amplified single-channel
 SDH systems
- IEC 61282-3: Guide to PMD calculations for links
- TIA TSB-107: Guide to PMD calculations for cable links

