Measurement problems for serial optics Greg LeCheminant - Agilent

- Accurate bathtub curves for transmitter jitter verification
- Producing reliable stressed eyes for receiver verification

Test and measurement perspective and developments for transceiver verification

- Several problems identified
- Implications of the problems
- Identifying some sources of the problems
- Potential solutions
- Results to date

Transmitter jitter verification problems

- Bathtub jitter: Great in theory but difficult to achieve in practice
- Functional devices appear out of specification
- Ouestions on the limitations of the test equipment

Receiver verification through stressed eye sensitivity tests

- Again...great theory but difficult to achieve at the bench
- Difficult to build the various components of the degraded signal in a systematic, well controlled manner
- High power penalties to tolerate stress
- Test equipment also suspect

We have taken a two-pronged approach to producing accurate bathtub curves

- Optimization of the error detector in BER test sets
- Alternate measurement approach based on high-speed sampling oscilloscopes

Bathtub curves: Test equipment limitations

- BERT error detectors prefer the ideal regenerated signal
- Sampled at the ideal point in time
- Sampled at the ideal signal level
- Bathtub curve violates all of the above

Transmitter bathtub curves

- A "raw" transmitter signal is being presented to the error detector
 - Significantly different situation than checking for error on the output of a receiver/decision circuit
- Although the functionality of an error detector is logical in concept, it is built with high-speed circuitry
 - RF/analog performance limitations
 - Depending upon the quality of the design, there can be pattern dependencies etc that can mask the quality of the signal being measured
- The typical error detector may not be viable for 10 GbEn transmitter bathtubs

The quality of the error detector can have a significant effect on the bathtub curve

BER vs. Delay

10.3125 Gbps

Jitter can also be characterized using a widebandwidth oscilloscope

- Histogram at the eye diagram crossing point
- Simple, but with limitations
 - Oscilloscope jitter can mask true performance
 - Need to differentiate random from deterministic
 - Difficult to assess low probability events

Clean up the oscilloscope

- Scope jitter has been reduced from the 1 ps rms level to well below 200 fs
- Removes virtually all of the oscilloscope contribution to a jitter measurement

With the scope jitter removed, develop a methodology to extract the various elements of jitter from the signal

RJ = 334 fs

Agilent 70843C Pattern GeneratorAgilent 83433 TransmitterAgilent 86100B DCA

•86115B dual optical module

•86107 precision time base

•PRBS7, 10.3125Gb

Examine the data edge locations relative to the ideal

- Clock signal serves as the ideal time reference
- Long patterns consume time
- Techniques being developed to optimize the analysis for time efficiency

Examine a data edge to determine the RJ of a pattern

Must also account for DJ that is not DDJ

The remaining jitter is the DJ not accounted for in the DDJ measurement. This is primarily composed of periodic jitter (PJ).

Bathtub curve is reconstructed from the measured and derived jitter elements

$$BER(UI, DJ, RJ) := 10^{\left[A-B \cdot \frac{UI-0.5DJ}{RJ}\right]^{2}} + 10^{\left[A-B \cdot \left(\frac{1-UI-0.5DJ}{RJ}\right)^{2}\right]}$$

Stressed eye receiver sensitivity

- Construction of the stressed eye requires a precision analysis of jitter at any point in the "stress chain"
- Both RJ and DDJ must be accurately known
- Using the oscilloscope based jitter analysis for verification
 - Linear, wide-bandwidth optical and electrical channels coupled with jitter analysis technique

Optical Stressed Eye Generation Setup

A review of our lab results

Clean Eye (1010)

Clean eye with pattern trigger

Clean Eye (PRBS7)

Note DDJ from pattern generator.

RJ generated by noise source followed by limit amp

ISI generated by 3 GHz LPF

DCD generated by limit amp offset

DCD is adjustable. 802.3ae specifies DCD > 6ps

DDJ generated by 11' coax

Combined DDJ, RJ, ISI, DCD and 6dB opt attenuation

DDJ and RJ measurements

	clean 1010	"clean" PRBS	11 ft coax	LPF	11 ft coax and LPF	White noise	Coax, white, LPF	Coax, white, LPF, –11.6dB atten
Rising edge DDJ	0.785 ps	5.90 ps	7.71 ps	17.3 ps	19.6 ps	5.23 ps	19.1 ps	18.9 ps
Falling edge DDJ	0.414 ps	9.54 ps	10.9 ps	16.7 ps	18.8 ps	9.85 ps	18.5 ps	19.6 ps
rj (rms)	0.298 ps	0.298 ps	0.254 ps	0.425 ps	0.463 ps	1.65 ps	1.87 ps	4.55 ps **
RJ (p-p)	2.16 ps	2.37 ps	1.72 ps	3.23 ps	3.45 ps	13.8 ps	14.9 ps	33.4 ps **

** degraded by scope vertical noise

DDJ values based on measurements of the deviation of individual edges from a nominal crossing point. RJ values based on histogram measurements of a single edge.

PRBS7 ED based Bathtub measurement

Vertical Eye Closure penalty = -1.6dB

ED versus Scope-Based bathtub measurements

Note: ED measurement made with "golden receiver"

PRBS7 Power Penalty

Optical Attenuation	Un-Stressed BER	Stressed BER (Vert Eye closure penalty = -1.6dB)	Stressed BER (Vert Eye closure penalty = -2.2dB)
-11 dB			< 10 ⁻¹²
-12 dB		< 10 ⁻¹²	2.7 x10 ⁻¹¹
-13 dB	< 10 ⁻¹²	3.1 x10 ⁻¹¹	1.8 x10 ⁻⁹
-14 dB	2.0 x10 ⁻¹¹	1.8 x10 ⁻⁸	2.2 x10 ⁻⁷
-15 dB	7.9 x10 ⁻⁸	3.8 x10 ⁻⁶	1.8 x10 ⁻⁵
-16 dB	1.5 x10 ⁻⁵	1.8 x10 ⁻⁴	

ED based bathtub measurement with PRBS15

PRBS15 Power Penalty

Optical Attenuation	Un-Stressed	Stressed BER
Allenuation	DEK	penalty = -2.75 dB)
-11 dB		< 10 ⁻¹²
-12 dB		3.6 x10 ⁻¹⁰
-13 dB	< 10 ⁻¹²	7.1 x10 ⁻⁸
-14 dB	1.7 x10 ⁻¹⁰	3.7 x10 ⁻⁶
-15 dB	1.6 x10 ⁻⁷	6.2 x10 ⁻⁵
-16 dB	1.8 x10 ⁻⁵	

Some caveats

- We only have access to "instrumentation" grade receivers and transmitters
- Need to verify bathtub curves on "real" 10 GbEn transmitter components
- Need to verify stressed eye performance on "real" 10 GbEn receiver components