## Support for Blue Book and 3PMD Set (1550 nm Serial, 1310 nm Serial & 1310 nm WWDM)

Lisa Buckman, David Cunningham, Piers Dawe, Richard Dugan, Tim Simmons: Agilent Technologies.

Ed Cornejo: Lucent.

#### Outline

Part 1:

- Why Support the Blue Book and 3 PMD Set?
- What About 850 nm MMF-based PMD's?
- Conclusions
- Part 2:
  - Further test data supporting the WWDM PMD proposal

## Support for the Blue Book with 3 PMD Set: *Why?*

- To gain broad market momentum the taskforce must initiate a draft out of this meeting.
- Taskforce objectives and the IEEE 802 five criteria are met by the Blue Book and 3 PMD set.
- Many, many options have been presented and debated over the last 15 months ~ 20 PMD's,.
- We need to move-on.

Our judgment is that the 3 PMD set is ready to move forward for detailed specification as a LAN/MAN standard – why wait?

## Support for the Blue Book with 3 PMD Set: *Five Criteria Highlights*

#### • Broad Market Potential:

- Serial 1550 nm for long reach, > 40 km SMF (MAN/WAN)
- Serial 1310 nm for intermediate reach, 10 km SMF (LAN/MAN/WAN)
- WWDM 1310 nm for short reach, 300m MMF, and intermediate reach, 10 km SMF (LAN/MAN)

#### • Compatibility with IEEE 802.3 Standard:

 Full-Duplex MAC, MAC Client interface for 802.2 LLC, 802.1 Architecture, Management and Internetworking, 802 Functional Requirements, SNMP standards.

#### • Distinct Identity:

- Each PMD has a unique application but there is some useful overlap too.
- Technical Feasibility:
  - Numerous presentations have been made, models have been "agreed", prototypes have been built and tested, products imminent.

#### • Economic Feasibility:

- Proposal leverages OC-192 and Ethernet technologies, network architecture, management, software and structured cabling.
- Target cost of 3 times 1000BASE-X challenging but possible.

## Serial solution for LAN and WAN

- 1310nm and 1550nm offer solutions for both LAN and WAN in SMF
  - LAN phy uses 64b/66b PCS for low overhead solution
  - WAN phy uses 64b/66b PCS for Ethernet frame encapsulation, WIS for Sonet framing
  - "UniPhy" covers distances to over 40km



## Support for the Blue Book With 3 PMD Set: *What About 850 nm MMF-based PMD's?*

- We support the development of 850 nm MMF-based PMD's, however, we have concluded that these should be standardized in other forums that are short reach and interconnect application focused:
  - International Telecommunication Union (ITU)
  - Optical Internetworking Forum (OIF)
  - Fibre Channel (FC)
  - Infiniband (IB)
- Ethernet is LAN/MAN/WAN focused not interconnect focused.

#### Support for the Blue Book with 3 PMD Set: *Layers and Interfaces*



Need detailed specifications for:

• Layers

• Interfaces

Interfaces very important, they will allow compatible 850 nm MMF-based transceivers to connect to 10 GBE systems too.

• There's a lot of work to do - let's move on!

### Conclusion of Part 1

- We recommend supporting the Blue Book and the 3 PMD set.
- 850 nm, MMF-based PMD's should be standardized in ITU, OIF, FC and IB which can make better use of them.
- It is unreasonable to hold IEEE 802.3ae up for 850 nm, MMF-based PMD's which are better suited to other application spaces.
- Vote for the 3 PMD set in IEEE 802.3ae and get the standard moving.

#### Part 2:

# Further test data supporting the WWDM PMD proposal

### 1310nm WWDM System Tests

- 1310nm WWDM modules tested over the following fiber:-
  - 300 m over multi mode (Round Robin fiber from TIA Task Group 2.2 Cable Bandwidth).
  - 10km over single mode fiber.

## 1310nm WWDM System Tests

- Conditions used for the test:-
  - All four WWDM channels active
  - PRBS 2<sup>7</sup>-1 bit pattern
  - For MMF, offset launch patch cord was used
  - Powers and wavelengths consistent with Del Hanson's three PMD proposal

#### 1310nm WWDM Wavelength Plan

#### Measured Transmit Spectral Output from Module

Measured Receive Filter Response



24.5nm Wavelength Spacing

## 1310nm WWDM System Tests: Results

#### 62.5um MMF Eye Patterns

#### Channel 1 Display off Scale DocuMAR Off-se Off-se





10km Fiber Length
2<sup>7</sup>-1 PRBS
3.125Gb/s Bit Rate
All Receiver Outputs

#### 1310nm WWDM System tests (MMF)



27-1 Test pattern

Off-set Launch Patch Cord, insertion loss ~ 0.5 dB TIA Task Group 2.2 Fibre (approx 470MHz\*Km BW)

#### 1310nm WWDM System tests (SMF)

**SMF Eye Patterns** 



<sup>2&</sup>lt;sup>7</sup>-1 Test pattern

## Modal Noise: Demultiplexer Testing

- The demux must be designed such that it introduces no additional modal noise power penalty.
- Modal Noise tests have been completed which confirm that the 4-channel molded-plastic demultiplexer used in the Agilent WWDM implementation introduces no additional modal noise power penalty.

## Modal Noise: Summary of Testing

- Used Agilent Labs' WWDM prototype
- Used a DFB laser at ~1282 nm (worst case)
- Used an offset launch patchcord
- Used a fiber shaker per GBE and MNTMG
- Performed 5 consecutive sets of measurements per GBE and MNTMG
- Compared results to MMF pigtail and a real point of MSL

#### Modal Noise: Test Setup & Results





Measurement Variance ~ 0.1 dB