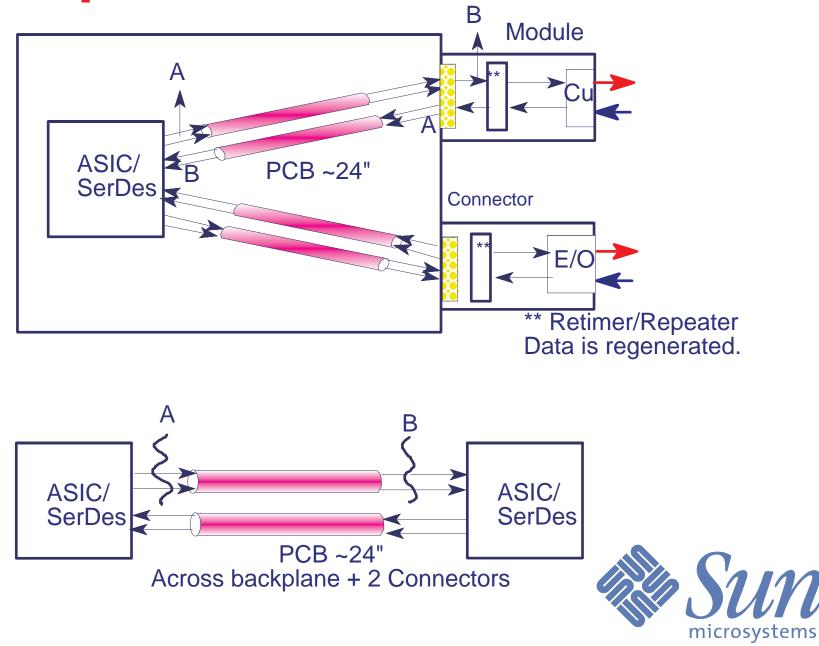
XAUI "Hari" Electrical Update

Ali Ghiasi Sun Microsystems

May 7, 2000

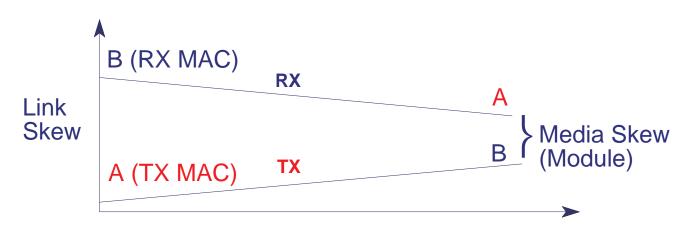
(650)786-3310 ghiasi@eng.sun.com Sun Microsystems 901 San Antonio Rd. Palo Alto, CA 94303

July 7, 2000

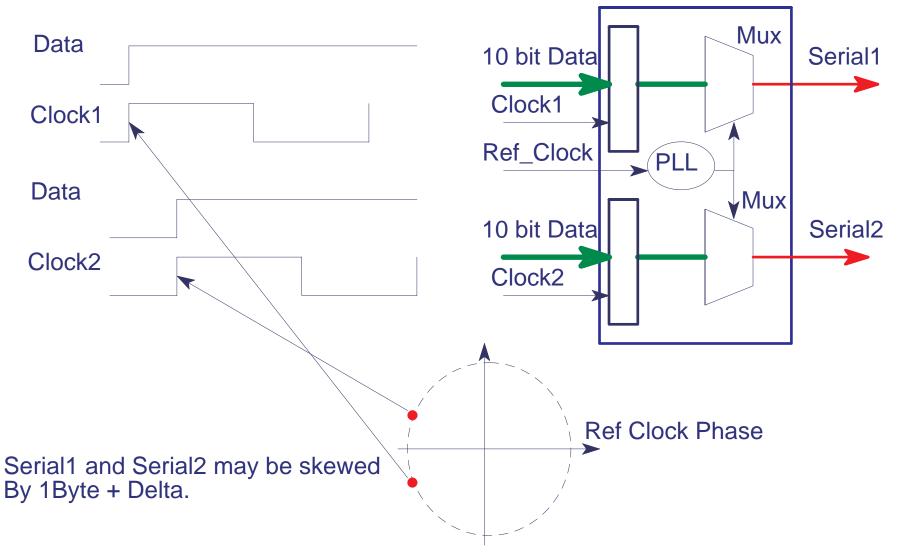

Sun Microsystems

Overview

- Overview of XAUI Implementation
- Symbol skew introduction by SerDes TX.
- Symbol skew introduction by Retimer.
- Power allocation.
- Skew allocation for PCB.


Example of XAUI Interconnect

July 7, 2000


XAUI Link Skew Propagation

• XAUI link intention were for the skew to add and propagate from TX to RX:

All serial solution you would need to de-skew.

Symbol Skew on SerDes Transmitter is Possible

Retimers may Introduce Symbol Level Skew

- Some retimers implementation may advertently add symbol level skew due to race condition .
- One of the possible implementation to avoid extra skew is to first de-skew all the lanes.
- We should evaluate trade off between more flexible retimer designs vs limiting total skew.

July 7, 2000

Current XAUI Skew Budget and Additional Possible Skew

Hari Skew for	Current XAUI	XAUI
TX ASIC / SerDes	1UI	11
TX PCB	1 UI	1
TX Retimer	?	10*
Media Skew	16 UI	16
RX Retimer	?	10*
RX PCB	1 UI	1
SerDes RX/ASIC	20 UI	21
Total Link Skew (UI)	39	70
Total Link Skew (ns)	12.48	22.4

Notes: *Retimer symbol level skew can be avoided with the right implementation.

New proposal allocates 2 UI of skew as a result of electrical imperfection on the transmit and receive.

Current XAUI SerDes RX has 20 bits of logical skew without any electrical skew allocation.

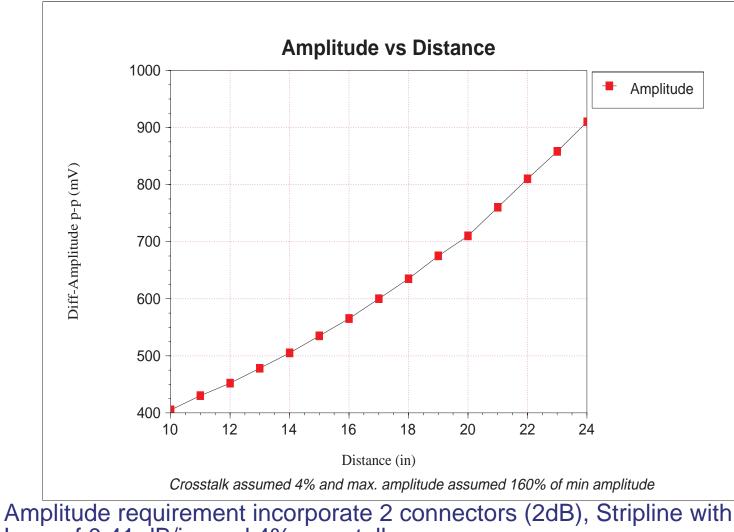
Comparison of the HS I/O and XAUI Interface

Item	PECL	LVDS	XAUI
Transmitter			
Vo Diff(max)p-p	2000 mV	800 mV*	800 mV
Vo Dif(min) _{p-p}	1200 mV	500 mV	500 mV
Voh	AC	1475 mV	AC
Vol	AC	925 mV	AC
Iout nominal	16 mA	6.5 mA	6.5 mA
Receiver			
Vin (max)	2000 mV	800 mV	1000 mV
Vin (min)	200 mV	200 mV	175 mV
Loss 50Ω	15.56 dB	8 dB	9.1 dB

* Corrected from the Nov. Presentation.

July 7, 2000

XAUI/Hari Loss Budget


Baud Rate	2.12 Gb/s	XAUI-3.125 Gb/s (Original)	XAUI-3.125 Gb/s (Updateded)
2 Connector Loss (dB)	1	1	2
Next+Fext Loss (dB)	0.75	0.75	1.5*
PCB Loss (dB)	7.35	7.35	5.6
Loss Budget (dB)	9.1	9.1	9.1
PCB Condition ¹	Normal/Worst	Normal/Worst	Normal/Worst
MSTL Loss Max (dB)/in	0.22 / 0.29	0.32 / 0.43	0.32 / 0.43
Max Distance (in)	33.4 / 25.3	23 / 17.1	17.50 / 13.02
"		1	1
PCB Condition	Normal/Worst	Normal/Worst	Normal/Worst
STL Loss Max (dB)/in	0.29 / 0.39	0.41 / 0.55	0.41 / 0.55
Max Distance (in)	25.3 / 18.8	18 / 13.4	13.65 / 10.18

* Assumes 4% crosstalk from 800 mV signal.

1. Normal PCB was assumed with loss tangent of 0.22, worst case it was assumed high temperature and humidity 85/85. Better grade of FR4 may reduce the loss by as much as 50%.

2. HP test measurement for 20" line showed 5.2 dB loss or 0.26dB/in based on the eye loss, the loss assumed here is very conservative.

Amplitude Requirement for Driving Distance

Sun Microsystems

Conclusions

- SerDes transmitter or a retimer may cause a symbol (10UI) of skew.
- Care needs be taken on design and implementation of SerDes/Retimer or just in case we should allocate more skew budget.
- At 3.125 Gb/s connector loss and crosstalk have greater impact, reducing the PCB distance to 13.6".
- If our goal is driving minimum of 16 to 20" of PCB, we need to increase the amplitude.

