### 8B/10B Idle Pattern for 12-byte IPG

### Rich Taborek, Don Alderrou *Meríal*



### **Presentation Purpose**

Modify 8B/10B Idle pattern to handle 12-byte IPG:

Maintain all 8B/10B Idle pattern benefits



## 8B/10B Idle Pattern

- Current proposed 8B/10B Idle pattern
  - Fixed /A/K/R/ followed by randomized /A/ spacing and /K/R/ sequence
  - K/ used to pad EOP column
- Problem: 12-byte IPG could compromise /R/ availability
  - Affects ability to perform clock tolerance compensation
  - Can't simply rearrange to place /R/ first:
    - Causes /A/ or /K/ starvation, and/or,
    - /R/ deletion may compromise EOP robustness
- Solution: Modify fixed /A/K/R/ to guarantee /R/
  - Start with random /A/K/ as first column following EOP
  - Second column is fixed /R/
  - Third and subsequent columns randomize /A/ spacing and /K/R/ sequence



IEEE P802.3ae

Task Force

8B/10B 12-byte IPG Idle

# Data Mapping Example

### RS/XGMII Encoded Data

| D<7:0,K0>   | Ι | Ι | S              | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | Τ | Ι | Ι | S              | d <sub>p</sub> |
|-------------|---|---|----------------|----------------|---|---|-------|---|----------------|---|---|---|----------------|----------------|
| D<15:8,K1>  | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | Ι | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> |
| D<23:16,K2> | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | Ι | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> |
| D<31:24,K3> | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | Ι | Ι | Ι | d <sub>p</sub> | d <sub>p</sub> |

### PCS Encoded Data

| Lane 0 | R | K | S              | d <sub>p</sub> | d | d | <br>d | d | d              | Τ | A | R | S              | d <sub>p</sub> |
|--------|---|---|----------------|----------------|---|---|-------|---|----------------|---|---|---|----------------|----------------|
| Lane 1 | R | K | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | K | А | R | d <sub>p</sub> | d <sub>p</sub> |
| Lane 2 | R | K | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | K | Α | R | d <sub>p</sub> | d <sub>p</sub> |
| Lane 3 | R | K | d <sub>p</sub> | d <sub>p</sub> | d | d | <br>d | d | d <sub>f</sub> | K | А | R | d <sub>p</sub> | d <sub>p</sub> |



**Task Force** 

La Jolla, CA

July 10-14, 2000

8B/10B 12-byte IPG Idle

Slide 4

## Summary

- Concerns of 8B/10B Idle pattern for 12-byte IPG addressed
- Solution is simple rearrangement of fixed Idle start pattern
- Retain all benefits of 8B/10B-based PCS and PMA
- Retain all benefits of XAUI/XGXS protocol
- No additional burden on receiver
- Retain all benefits of Idle EMI enhancements
- All benefits applicable to PCB traces & 4 Channel PMDs



# Supplementary Slides

Intended for those that REALLY want to know how this stuff works

- 8B/10B Transmit state diagram
  - Transmit IPG, SOP, EOP or Other (e.g. LSS)
- 8B/10B Transmit Idle state diagram
  - Generate IPG/Random AKR Idle
- 8B/10B Transmit Idle logic diagram
  - AKR Randomizer
- 8B/10B Transmit Data multiplexer diagram
  - Multiplexing of XGMII input and Random AKR Idle



### 8B/10B Transmit state diagram





#### 8B/10B Transmit Idle logic diagram



#### 8B/10B Transmit Data multiplexer diagram

The data multiplexer selects either the XGMII 32-bit data & 4-bit control or one of the special codes. If none of the SEND\_x signals are active, then the XGMII data & control is selected. The SEND\_O signal has priority over the other SEND\_x signals and will select the XGMII data & control.

