Simple Link Protocol (SLP)

A zero-overhead packet delineation for 10Gb Ethernet LAN-PHY

IEEE 802.3 Albuquerque meeting
March 6-10, 2000

Kamran Azadet, Lei-lei Song, Tom Truman, Mark Yu …… Lucent Technologies
Paul Bottorff, Norival Figueira, David Martin ……….. Nortel Networks
Fred Weniger ... Vitesse
Tom Palkert ... AMCC
Jim Yokouchi ...Sumitomo
Don Larson ... TriQuint
Goals

- For packet-delineation & line coding scheme (PCS)
 - Zero overhead
 - No packet length required
 - No rate conversion required (10.000Gb/s and 10.000GBaud)
 - Serial- and WDM-PMD agnostic
 - LAN friendly - simple and low cost
 - Suitable for other non-ethernet packet-based protocols

- For chip-to-chip interconnect (XAUI)
 - EMI mitigation
 - No code conversion required
 - ... Can work with 8b/10b HARI or SUPI
Key Concepts for SLP

- Standard Ethernet frames have sufficient information to find packet/byte boundaries
 - Control characters are embedded in Inter-Packet Gap (IPG)

- Encoding: zero-overhead scrambling
 - Data payload is scrambled bit serialization of Ethernet packets
 - Control characters: EMI-reducing scrambling or DC-balanced control chars
SLP Frame Delineation

- PHY state machine tracks “context”: {HUNT, DATA, CONTROL}
 - HUNT state: unsynchronized, looking for repeated IDLE characters

- Start of Packet
 - Look for SOP byte
 - When found, enter DATA mode
 - Look for frame termination pattern

- Frame termination pattern: (T-FLAG)
 - Look for {EOP, 11 x IDLE}
 - Enter CONTROL state
 - All bytes are control characters until SOP is found

- Detection of error packet (E-FLAG):
 - Drop current packet and Enter CONTROL state
Detection of control sequences

- There are 2 critical control sequences, each at least 12-byte long
 - End of normal packet: T-FLAG
 - End of error packet: E-FLAG

- Occurrence of these flags inside payload is once every 2,000 billion years (match over 12Bytes is very unlikely)

- If the end-of-packet sequence, the T-FLAG, is found inside payload (not a lucky day!)
 - Transmitter generates E-FLAG
 - Packet is re-transmitted with a different scrambler state

- Allowing up to 3-bit mismatches for detection of the control sequences to increase the likelihood of matching patterns
What about false match?

- Pattern matching with 3 bit error tolerance means = difference between two words is less than 3 bits

- Likelihood of matching patterns with 3 bit error tolerance is greater than with no error tolerance, but still extremely small

- Probability of false match: ~ once every 15 million years (see supporting calculations in full presentation)
Calculating Probability of False Match

- Chance that a 96-bit segment A matches desired pattern B to within 2 bits

$$\Pr\left[X = \sum_{i=0}^{96} A_i \oplus B_i \leq 3 \right] = \frac{1}{2^{96}} \left(\binom{96}{0} + \binom{96}{1} + \binom{96}{2} + \binom{96}{3} \right)$$

$$= 1 \times 10^{-24}$$

- Number of 96-bit patterns per year (@10Gbit/s) =

$$10^{10} \text{ bit/s} \times 1/8 \text{ bits} \times (3600 \times 24 \times 365) \text{ s/year} ; \ 4 \times 10^{16} / \text{year}$$

- Thus, frequency of false match is once every 15 million years
Scrambling Scheme

- Similar to scrambling scheme used in SONET (proposed by Bottorff, Martin & Figueira)
 - $x^{43} + 1$ is self-synchronous
 - $x^7 + x^6 + 1$ is periodically synchronized
- Dual scrambler
 - Inner scrambler prevents malicious attack
 - Outer scrambler defines spectral characteristics
- Scrambling improves EMI characteristics
IDLE Pattern Spectral Measurements at “lane” Rate

- Green: PRBS 2^7-1 @ 2.5gbit/sec
- Red: 8b/10b @ 3.125gbit/sec

10-20 dB improvement for scrambling relative to 8b/10b
IDLE Pattern Spectral Measurements at Line Rate

- Green: PRBS 2^7-1 @ 10.0 Gb/s
- Red: 8b/10b @ 12.5 Gb/s
Control characters

- S: SOP
- T: EOP
- E: Error
- I: Idle
- BI: Busy Idle

- 4 bit Hamming distance => 1 bit error correction, or 3bit error detection
- Can have up to 16 control codes with 4b Hamming distance – plenty of spares
The following extended Hamming (8,4) code can be used for representing up to 16 control characters:

\[(0 0 0 1, 0 1 1 1), (0 0 1 0, 1 1 0 1), (0 0 1 1, 1 0 1 0),
(0 1 0 0, 1 1 1 0), (0 1 0 1, 1 0 0 1), (0 1 1 0, 0 0 1 1),
(0 1 1 1, 0 1 0 0), (1 0 0 0, 1 0 1 1), (1 0 0 1, 1 1 0 0),
(1 0 1 0, 0 1 1 0), (1 0 1 1, 0 0 0 1), (1 1 0 0, 0 1 0 1),
(1 1 0 1, 0 0 1 0), (1 1 1 0, 1 0 0 0),
(0 0 0 0, 0 0 0 0), (1 1 1 1, 1 1 1 1).\]

Property: -- minimum Hamming distance of 4

The first 14 code words are DC-balanced, hence can be used directly for systems without scrambler.
Loss of Synchronization

- Loss of synchronization occurs when:
 - PHY control state machine in DATA mode and no IPG after timeout period
 - Timeout period can be chosen as maximum frame length (1518+8 bytes) for Ethernet
 - For non-Ethernet applications, other timeout period can be used (e.g., 8 Kbytes)

- Synchronization is achieved immediately at the next IPG (provided that optical link is up)

- No handshaking required between Transmitter & Receiver

- Synchronization time < maximum packet length
Application of SLP to PCS/PMA Interface

- **16-bit Parallel (625MHz)**
 - Interface of choice for serial PMD
 - 16 bit interface is formed by grouping two bytes at XGMII
 - Phase ambiguity in serial PMD results in constant bit offset between mux & demux – easily resolved by searching for T-FLAG using sliding window to find byte-sync

- **Scrambled 4-bit Serial (2.5GBaud / lane)**
 - SLP could also be used for transmission over 4-channel WWDM
 - Results in 25% lower Baud-rate for only 2.5% penalty due to DC wander
 - Each of the 4 bytes of the encoder is directly sent serially on four lanes
 - Deskewing can be done using “ALIGN” control code periodically embedded in IPG
Summary of Simple Link Protocol

- Zero overhead (10.0000GBaud)
- No rate conversion, “gear box”, or elastic buffers
- SOP is not restricted to Lane 0: no impact on IPG
- Direct mapping of Ethernet (LAN friendly)
- Data rate does not decrease to 9.29Gb/s (as for 64b/66b)
- Preserves byte boundaries (WAN friendly)
- Suitable for both serial and WDM
- Low latency (could be used in serial Infiniband)
- Scrambling allows DC balance and is good for EMI
- Best performance, at lowest baud-rate
- Can work with or without HARI (as serial I/O)
Demonstration System

- 16-bit LVDS @ 622 MHz interface into Opto module
- < 20k gates (~3% of FPGA logic resources)
- VHDL code will be made available to SLP supporters
Back-up slides
Case of Transmit Error / Abort

- Support of cut-through packet switching
- Error can occur inside the payload:
 - when error occurs terminate packet, then:
 - insert at least 4 error symbols (desirable in some applications)
IDLE Pattern Spectral Measurements

- Data Pattern
 - 1 megabit in length using PRBS
- 8B10B Pattern
 - 8B10B Encode Data Pattern
- Scrambled Pattern
 - Scrambled Data Pattern based on proposed $X^{58}+X^{19}+1$ Sequence
IDLE Pattern Spectral Measurements

- Test setup used in spectral measurements
PCS latency

- Less than XGMII clock latency at encoder (direct mapping of XGMII)
- 3 XGMII clock cycles at the decoder to detect EOP (12Bytes)
 - can be reduced by using less than 12Bytes to detect EOP
 - ex: when using 8Bytes pattern matching, latency can be reduced to 2 cycles
 - Probability of false match with 8bytes and 1b error tolerance is 3.52×10^{-18}
 - False match over 8bytes with 1b error tolerance occurs ~ once a year
- In the conservative case (12Bytes) latency is 16 Byte times
- total PCS latency is = **12.8ns**
During loss of sync or initialization enter HUNT mode

Look for sequence of repeated IDLE characters

Output of descrambled IDLEs should give a long chain of 000….

Initially open the loop of the side-stream descrambler, and after observing N zeros, enable sync bit (then close the loop of the descrambling shift register)

100BASE-TX uses a similar scheme