WORLD WIDE PACKETS

ACCESS B RILLIANTCE

Programmable Pattern Generator
For 10GBASE-R/W

Jonathan Thatcher
World Wide Packets

—4 WORLD WIDE PACKETS"

Motivation

Motivation: provide a simple to implement,
orogrammable pattern generator.

Rationale: it is not clear now, and may not
e clear for along time, what pattern
orovides the optimal characteristics for
stressing a link (future graduate students
beware ©)

In fact, there may not be a single optimal
pattern....

But, we have a recommendation that is a
great starting point (see Ewen presentation)

13 March 2001; Thatcher

—4 WORLD WIDE PACKETS"

Requirements

Relatively short pattern
Able to be loaded into BERT memory
High repetition rate

High degree of flexibility
Run length;
Disparity vs time;
Transition density;
Spectral content;
etc.

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Assumptions

MDIO registers are used to describe the
algorithm. It is understood that the MDIO
registers are optional and that an alternative
method of control may be implemented.

The bit stream indicated by the algorithm and its
“seeds” is normative. There is no specific
Implementation prescribed or implied.

While it should be clear that the concept used
here could be applied to any PRBS, we use the 58
bit scrambler selected for the 10GBase PCS(s).

We do not know how to embed this pattern within
a SONET frame and ensure a relatively short,
deterministic pattern “on the wire.”

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Pattern -- General Description

Repetition of 4 sub-patterns of 216 bits

PatternO; Patternl; Pattern2; Pattern3;
Pattern0Q; Pattern?2...

Each sub-pattern is a segment out of the
2°8 scrambler stream
Known starting state (last “64 bit” sequence
of previous sub-pattern)

Modified to desired initial state by input of a
previously calculated “psuedoseed” input to
the scrambler

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Pattern options

May have quarter length pattern
PatternO = Patternl = Pattern2 = Pattern3
pSeed0 = pSeedl = pSeed2 = pSeed3

May have half length pattern
Pattern0O = Pattern2; Patternl
PSeed0 = pSeed2; pSeedl

Pattern3
pSeed3

13 March 2001; Thatcher

—4 WORLD WIDE PACKETS"

Algorithm

. Load -- Load Scrambler with bit Seed(0:63)

. Data -- Shift in 1023 (219-1) sets of data(0:63)
. pSeedO — Shift in 64 bit psuedoseed0(0:63)

. Data -- Shift in 1023 sets of data(0:63)

. pSeedl — Shift in 64 bit psuedoseed1(0:63)

. Data -- Shift in 1023 sets of data(0:63)

. pSeed2 — Shift in 64 bit psuedoseed2(0:63)

. Data -- Shift in 1023 sets of data(0:63)

. pSeed3 — Shift in 64 bit psuedoseed3(0:63)

return to step 2.

© 00 N O O & W N P

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Transmit MDIO Registers/Bits

Transmit

Conformance Test Control (Normal; Test)
Test Data (0:63)

Seed (0:63)

PsuedoSeed0(0:63)

PsuedoSeed1(0:63)

PsuedoSeed2(0:63)

PsuedoSeed3(0:63)

13 March 2001; Thatcher —=4 WORLD WIDE PACKETS"

Receive MDIO Regqisters/Bits

Recelve

Conformance Test Control (Normal; Test)
Test Data (0:63)

Seed (0:63)

PsuedoSeed0(0:63)

PsuedoSeed1(0:63)

PsuedoSeed2(0:63)

PsuedoSeed3(0:63)

Error Counter (0:15)

Error Counter Reset (clears Error Counter
when written— auto-returns to 0)

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Layer Diagram

Note that the pattern is generated “after”
the 64/66 encoder.

The only portion of the 64/66 encoder used is
to insert the synchronization bits

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Pattern Generator Conceptual

0 63
PCS Transmit Data f,“ Seed
Test Data
64 pSeedO %
l_ Encoder pSeedl | S
Sync Header |01 o pSeed?2
74 pSeed3

1+x3%9+x°8 Scrambler load
v

PMA

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Sync Header

Assumed constant throughout compliance

testing
If not, we need a specific algorithm that
defines state such that spectrum is
deterministic
Will be used by the Rx synchronization state
machine to align on 66 bit (64 bit) boundaries

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Creating the Seed / Psuedoseeds

Seed:
64 bits
Equal to 58 bits loaded as seed
Plus 6 bits of predetermined prepend

Psuedoseeds

64 bits....

Mathematically determined (deterministic)
based on the result of the last state of the
previous subpattern

13 March 2001; Thatcher —=4 WORLD WIDE PACKETS"

Pattern Generator State Diagram

@ From
r J SubPat3_data ¢
Norm Mode SubPat0_seed SubPatl_seed
Scrambler <= pSeed0 Scrambler <= pSeedl
Ctrl=T *clk cnt<=1 A cnt<=1
Ctrl=T *cl Ctrl=N TestCtrl=T *clk Ctrl=N
Init Test Mode q >® ;l 4>®
SyncHeader <="01"
y _ SubPat0_data SubPatl data
Load <= true Scrambler <= TestDat Scrambler <= TestDat
Scrambler <= Seed crambler <= TestData crambler <= TestData
cnt ++ cnt ++
Ctri=N Ctri=T *clk
4 Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T *
; Clk * Clk * Clk * Clk *
SubPat0_first cnt<1064 Cnt=1064 cnt<1064 Cnt=1064
Load <= false < —
Scrambler <= TestData Ctrl=N Ctrl=N SubPat?
cnt <=2
CtrlI=N CtrI=T *clk @ @

Not shown: SubPat2_seed; SubPat2_data; SubPat3 seed; SubPat3 data

13 March 2001; Thatcher —=4 WORLD WIDE PACKETS"

Pattern Generator State Diagram 2

©

v

Norm Mode

From SubPat3 data

Ctrl=T *clkl<

Init Test Mode
SyncHeader <="01"
Load <= true
Scrambler <= Seed

4

4

SubPatl seed
Scrambler <= pSeedl

SubPat2_seed
Scrambler <= pSeedl

CtrlI=N

cnt<=1

cnt<=1

estCtrI=T *clk
>

SubPat0_data
Load <= false
Scrambler <= TestData

TestCtrl=T *clkl Ctrl=N TestCtrl=T *clkl Ctrl=N
s, —— () e O)

SubPatl data SubPat2_data
Scrambler <= TestData Scrambler <= TestData

cnt ++ cnt ++ cnt ++
Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T *
Clk * Clk * Clk * Clk * Clk * Clk *
cnt<1064 Cnt=1064 cnt<1064 Cnt=1064 cnt<1064 Cnt=1064

CtrlzN@

CtrlzN@

—>
Ctrl=N f To SubPat3

—— WORLD WIDE PACKETS"

13 March 2001; Thatcher

Pattern Generator State Diagram 3
© }

NoHIMeRE From SubPat3 data
Ctrl=T *clkl< ¢ %
Init Test Mode SubPatl seed SubPat2_seed
SyncHeader <="01" Load <= true Load <= true
Load <= true Scrambler <= Seedl Scrambler <= Seed2
Scrambler <= Seed0 cnt<=1 _ cnt<=1
Ctrl=N _ TestCtrl=T *clk Ctrl=N TestCtrl=T *clk Ctrl=N
estCtrl=T *clk
J R . @
SubPatO_data SubPatl_data SubPat2_data
Load <= false Load <= false Load <= false
Scrambler <= TestData Scrambler <= TestData Scrambler <= TestData
cnt ++ cnt ++ cnt ++
Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T * Ctrl=T *
Clk * Clk * Clk * Clk * Clk * Clk *
cnt<1064 Cnt=1064 cnt<1064 Cnt=1064 cnt<1064 Cnt=1064

.
_ To SubPat3
C”"“@ Ctr=N @ CtrI:N®

13 March 2001; Thatcher —=4 WORLD WIDE PACKETS"

Advantages of Pattern Generator 2

As compared to pattern generator 1...

Guaranteed reset to known state at
beginning of every pattern

No PsuedoSeed0(0:63) register required
Small simplification in logic

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Advantages of Pattern Generator 3

As compared to pattern generator 1...

Guaranteed reset to known state at
beginning of every subpattern

No PsuedoSeed0(0:63) register required
Seed0:3 used instead of pSeed0:3
Small simplification in logic

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Receive Sync and Compare

Uses same algorithm as Tx for pattern

Synchronization method needs to be determined
by ad-hoc

Statistical

Simple state machine

Etc

Check algorithm needs to be determined by ad-
hoc

Bit by bit counter?

Word by word by word counter?

Reset during resync and under MDIO control?

13 March 2001; Thatcher — WORLD WIDE PACKETS"

Motion

Move to create an ad-hoc to bring to the May
meeting (with circulation 2 weeks before
meeting) a complete draft of the
(programmable) pattern generator
described in (Ewen & Thatcher)/ Thaler)

Moved:

Seconded:

Technical (75%):
For:
Against:
Abstain:

13 March 2001; Thatcher — WORLD WIDE PACKETS"

