Optical Modulation Amplitude (OMA) Specifications

Peter Öhlen, Krister Fröjdh, (Optillion)

Previous presentations on OMA

- Donhowe et al.
http://www.ieee802.org/3/10G_study/public/sept99/donhowe_1_0999.pdf
- Frojdh and Ohlen
http://www.ieee802.org/3/ae/public/may00/frojdh_1_0500.pdf
http://www.ieee802.org/3/ae/public/jul00/frojdh_1_0700.pdf
http://www.ieee802.org/3/ae/public/sep00/ohlen_1_0900.pdf

What is OMA ?

$$
\begin{aligned}
& O M A=P_{1}-P_{0} \\
& P_{\text {average }}=\left(P_{1}+P_{0}\right) / 2 \\
& E R=P_{1} / P_{0}
\end{aligned}
$$

- Used by FC
- At high ER: OMA/2 $=\mathrm{P}_{\text {average }}$
- Measurements are somewhat different
- Changes in 52.6
- You could measure
- $P_{\text {average }}$ \& ER
- and calculate OMA

Why use OMA ?

- At the receiver OMA matters not $P_{\text {average }}$
- With average power, we have to consider extinction ratio penalty (2.2 dB @ ER=6dB)
- With OMA, it is possible to use low or high extinction ratio, provided that
- eye safety is OK at the transmitter
- we do not overload the receiver
- At this point we do not change the numbers

How to specify OMA?

- OMA in mW:
+ Simple measurement on oscilloscope
- Hard to track changes to current draft
- OMA/2 in dBm:
- Needs conversion if measured on oscilloscope
+ Easy to track changes to current draft, at large extinction ratio $P_{\text {average }}=O M A / 2$
+ All the link budgets and penalties are i dB

Introduction of OMA

- 850 serial: Spec @ 6.5 dB extinction ratio
- ER penalty $=1.98 \mathrm{~dB} \rightarrow$ decrease powers by 1.98 dB
- 1310 serial: Spec @ 6 dB extinction ratio
- ER penalty $=2.23 \mathrm{~dB} \rightarrow$ decrease powers by 2.23 dB .
- 1550 serial: Spec @ 8 dB extinction ratio
- ER penalty $=1.39 \mathrm{~dB} \rightarrow$ decrease powers by 1.39 dB .
- Add eye safety ($T x$) and overload ($R x$) specs

Changes for 850 serial

Description	Old value	New value
Tx power (min)	$\mathrm{P}_{\text {average }}=-5.5 \mathrm{dBm}$	$\mathrm{OMA} / 2=-7.48 \mathrm{dBm}$
RIN	N / A	N / A
RIN_OMA		$-123.02 \mathrm{~dB} / \mathrm{HZ}$
	$\mathrm{P}_{\text {average }}=-13 \mathrm{dBm}$	$\mathrm{OMA} / 2=-14.98 \mathrm{dBm}$
Rx sensitivity	$\mathrm{P}_{\text {average }}=-8.5 \mathrm{dBm}$	$\mathrm{OMA} / 2=-10.48 \mathrm{dBm}$
Stressed Rx sensitivity (50 um MMF)	$\mathrm{P}_{\text {average }}=-7.6 \mathrm{dBm}$	$\mathrm{OMA} / 2=-9.58 \mathrm{dBm}$
Stressed Rx sensitivity (62.5 um MMF)	$\mathrm{P}_{\text {average }}=-1$	$\mathrm{P}_{\text {average }}=-1 \mathrm{dBm}$
Rx max. input power		

Changes for 1310 serial

Description	Old value	New value
Tx power (max)	$\mathrm{P}_{\text {average }}=1 \mathrm{dBm}$	$\mathrm{OMA} / 2=-1.23 \mathrm{dBm}$
Tx power (min)	$\mathrm{P}_{\text {average }}=-4 \mathrm{dBm}$	$\mathrm{OMA} / 2=-6.23 \mathrm{dBm}$
Average launch power for eye safety	$\mathrm{P}_{\text {average }}=1 \mathrm{dBm}$	$\mathrm{P}_{\text {average }}=1 \mathrm{dBm}(\mathrm{TBD})$
RIN	$-130 \mathrm{~dB} / \mathrm{Hz}$	N / A
RIN_OMA	N / A	$-127.77 \mathrm{~dB} / \mathrm{HZ}$
Rx sensitivity	$\mathrm{P}_{\text {average }}=-14 \mathrm{dBm}$	$\mathrm{OMA} / 2=-16.23 \mathrm{dBm}$
Stressed Rx sensitivity	$\mathrm{P}_{\text {average }}=-11.45 \mathrm{dBm}$	$\mathrm{OMA} / 2=-13.68 \mathrm{dBm}$
Rx max. input power	$\mathrm{P}_{\text {average }}=1$	$\mathrm{OMA} / 2=-1.23 \mathrm{dBm}$

Changes for 1550 serial

Description	Old value	New value
Tx power (max)	$\mathrm{P}_{\text {average }}=2 \mathrm{dBm}$	$\mathrm{OMA} / 2=0.61 \mathrm{dBm}$
Tx power (min)	$\mathrm{P}_{\text {average }}=-2 \mathrm{dBm}$	$\mathrm{OMA} / 2=-3.39 \mathrm{dBm}$
Average launch power for eye safety		$\mathrm{P}_{\text {average }}=2 \mathrm{dBm}(\mathrm{TBD})$
RIN	$-140 \mathrm{~dB} / \mathrm{Hz}$	N / A
RIN_OMA	N / A	$-138.61 \mathrm{~dB} / \mathrm{HZ}$
Rx sensitivity	$\mathrm{P}_{\text {average }}=-20 \mathrm{dBm}$	$\mathrm{OMA} / 2=-21.39 \mathrm{dBm}$
Stressed Rx sensitivity	$\mathrm{P}_{\text {average }}=-15.41 \mathrm{dBm}$	$\mathrm{OMA} / 2=-16.8 \mathrm{dBm}$
Rx max. input power	$\mathrm{P}_{\text {average }}=-8$	$\mathrm{OMA} / 2=-9.39 \mathrm{dBm}$

Extinction ratio

- With OMA we can use a low or high extinction ratio to optimize a transmitter
- Proposed changes to extinction ratio:
$-1310 \mathrm{~nm}: 6 \mathrm{~dB} \rightarrow 4 \mathrm{~dB}$
$-1550 \mathrm{~nm}: 8 \mathrm{~dB} \rightarrow 4 \mathrm{~dB}$
$-850 \mathrm{~nm}: 6.5 \mathrm{~dB} \rightarrow 4 \mathrm{~dB}$

Reasons for low ER, external modulator

- Electrical driving easier
- Easier to get symmetric eye with an electroabsorbtion modulator

- Short modulator \rightarrow lower modulator loss.

Reason for low extinction ratio, 2 , directly modulated laser

- You want to stay well away from the threshold
- Laser is slowest near the threshold
- Low ER improves high-speed performance
- Simpler driving electronics
- Lower dispersion penalty, important for 1550 nm

Motion

- Specify the Optical Modulation Amplitude (OMA) as OMA/2 in dBm

