Interferometric Noise Penalty in SMF Links - Experimental Results and Comparison with Theory

Petar Pepeljugoski George Sefler

Outline

Measurement Setup
Comparison of measured and calculated penalties for 3dB and 3.7 dB extinction ratio

- Conclusion
- Proposed solution

Experimental Setup

setup closely follows analytic model
worst case IN controlled with polatization controller

Calculation of IN

Improved calculation follows formalism adopted by P. Legg (JLT. vol. 14, no. 9, pp. 1943-1954)
expressions for conditional error probabilities
Takes into account ER, ISI

Interferometric Noise Penalty - 3dB ER

IN penalty 3.2 dB with <u>maximum polarization alignment</u> - leaves ample of positive margin for 24 dB RL and shortest links

IN penalty 0.6 dB for longest links with no connector loss - leaves 2dB margin

Comparison of Measured and Calculated Interferometric Noise Penalty - 3dB ER

0 or 2 dB link loss due to connectors

- shortest links have only 3.2 dB (0 dB loss) ~1.5 dB (2dB loss) worst case penalty (polarization aligned)
- excellent agreement between measurements and analytical model

Interferometric Noise Penalty - 3.7 dB ER

 IN penalty 2.5 dB with <u>maximum polarization alignment</u> - leaves even more positive margin
No IN penalty with <u>minimum polarization alignment</u>

10⁰ 10^{-2} worst case ---- 14 dB • best case -**O**- 16 dB -**O**- 34 dB 🔶 18 dB 10 🔶 32 dB 10 🔶 28 dB 1000000 60000 10^{-4} 🔶 24 dB 🔶 26 dB 10⁻⁶ -**O**- 26 dB - 24 dB 28 dB -0-🔶 22 dB 10^{-6} 30 dB -0-BER BER 32 dB -0-10⁻⁸ 34 dB -10⁻⁸ -0- ∞ 10⁻¹⁰ 1 10⁻¹⁰ 10⁻¹² 10⁻¹² 10^{-14} 10^{-14} -9 -8 -7 -9 -8.5 -7.5 -7 -6.5 -5.5 -8 -6 Attenuation [dB] Attenuation

4 dB ER will be even more robust!

Comparison of Measured and Calculated Interferometric Noise Penalty 3.7 dB ER

0 or 2 dB link loss due to connectors

shortest links have 2.5 (0 dB loss) or 1.1 dB (2dB loss) worst case penalty (polarization aligned)

very good agreement with analytical model

Dependence of BER on Time

BER drifts from maximum polarization
initial link settings for BER = 0.5e-9

Conclusions

- Interferometric noise penalty is real and can be large
- Measurements and calculations in excellent agreement
- 1300 nm serial links still have positive margin after allocating IN penalty
 we have 0.4 dB margin left

Proposed Solution

Include interferometric noise penalty in the link budget

- Set minimum Extinction Ratio to 4 dB
- Proposed solution does not require any component redesign, does not cause pain to anybody

