1550nm Long Distance CWDM Transceivers

Michael M. Fisk Luminent Fred Mohamadi Broadcom

PMD Solutions - 4 CHANNEL 1.5µm CWDM TRANSCEIVERS

Full-Duplex CWDM Transceivers Utilizing
 4 Channels in the 1.5µm Window

- ≻4 Uncooled DFB Lasers/PIN Diodes with an Integrated Optical MUX/DEMUX
- >20nm Channel Spacing
- >10, 20 and 40 km Transmission Distances

1.5 µm CWDM Technical Feasibility

 Transceiver Performance Has Been Verified at Test Sites On 50km SMF-28 Fiber
 Uses Field-Proven Technology in a Low-Cost, Reliable Format

Transceivers Are Currently Shipping To Customers

Why Use 1550nm CWDM Technology?

>40 km and *Beyond* Demonstrated Over Fiber with Excellent Performance
> Uses Reliable, Proven Technologies
> Less Susceptible To Laser Chirp/Dispersion
> Technology is Available Today--No Waiting
> High Volumes Available July 1

Why Use 1550nm CWDM Technology?

 Lowest Cost Technology for Long Distance 10 Gigabit Ethernet Transmission
 TIA Available CMOS Technology
 PHY Available CMOS Technology
 Detectors Available InGaAs Technology
 Lasers Available Directly Modulated Non-cooled

1.5 um CWDM Transceiver Performance

Description	10 km	20 km	40 km	Unit
Transmitter Type				
Signaling speed per channel (range)	3.125			GBd
Wavelength (range), four channels	14	nm		
Channel center wavelengths	1501, 15	nm		
Channel separation	20			nm
Trise/Tfall (max. 20-80% response time)		ps		
RMS spectral width (max. @ -20 dB)	0.2			nm
Extinction Ratio		dB		
RIN	-120			dB/Hz
Average launch power, four channels (max)	2.5	5.3	8.0	dBm
Average launch power per channel (max)	-3.5	-0.7	2.0	dBm
Average launch power per channel (min)	-7.0	-4.0	-1.0	dBm

Table 38-8 Receiver

Description	10 km	20 km	40 km	Unit
Signaling speed per channel (range)		3.125		GBaud
Wavelength (range), four channels	1495.5 to 1566.5			nm
Channel center wavelengths	1501, 15	521, 1541, 15	61 ± 5.5	nm
Channel separation		20		nm
Return loss		12		dB
Receiver saturation, four channels	6.0	6.0	3.5	dBm
Receiver saturation, per channel	0.0	0.0	-2.5	dBm
Stressed receiver sensitivity, four channels (max)	-6.5	-6.5	-9.0	dBm
Stressed receiver sensitivity, per channel (max)	-12.5	-12.5	-15.0	dBm

Table 39-9 Link Power Budget

Parameter	10 km	20 km	40 km	Unit
Dispersion bandwidth as measured at 1.5 μ m	150	150	150	GHz*km
Minimum TX Output	-7.0	-4.0	-1.0	dBm
Stressed RX Sensitivity	-12.5	-12.5	-15.0	dBm
Link power budget	5.5	8.5	14.0	dB
Fiber Loss	0.3	0.3	0.3	dB/km
Connector Loss	0.4	0.4	0.4	
Unallocated margin in link power budget	2.1	2.1	1.6	dB

1.5 µm CWDM Performance

Cost Comparison

So, What Happens In 2003?

> 1550nm CWDM Transceivers Can Be Upgraded To 4 x 10GigE Gbaud.
> Upgrade Will Be Inexpensive with Proven Technology
> Distances Up To 20 km
> It Doesn't Have To Be Serial vs. CWDM: Serial & CWDM are Complimentary Technologies

1.5 µm CWDM Open Issues

>Open Architecture

Converter Boxes Being Developed By Two Independent Companies.

≻Skew

Skew Compensation Is Readily Available.Size

 The Current Design Has Been Accepted at Multiple Equipment Manufacturers
 Smaller Size is Currently Under Design

Comparison of Proposed Solutions

	Comparison of Proposed Technologies				
PMD Proposal	Cost	Available	Easily	PHY	
	Effective	Today	Upgradable To 40GE	Available	
CWDM 850nm	Yes	No	No	No	
Serial 850nm	No	No	No	No	
Serial 1300nm (FP)	No	No	No	No	
Serial 1300nm (DFB/VCSEL)	No	No	No	No	
CWDM 1300nm	Yes	Maybe	No	No	
Serial 1300nm (Cooled DFB)	No	No	No	No	
CWDM 1550nm	Yes	Yes	Yes	Yes	
Serial 1500nm	No	No	No		nine

No. AMERICANA

Summary

>10, 20 & 40 km Transmission Distances Are Available Now

- Utilizing Field-Proven Technologies Insures Reliable Performance
- Cost Is Favorable To Other Proposed Technologies

Easily Upgradable To 4x10 Gigabit Ethernet

Complimentary With Serial Development

