Comparison of Rate Control Methods

IEEE P802.3ae 10 Gigabit Ethernet Task Force 24-May-2000 Ottawa, ON Howard Frazier - Cisco Systems

> IEEE P802.3ae 10Gb/s Task Force

HMF

Goal For This Presentation

- Present options for rate control, in support of our objective to:
 - Define a mechanism to adapt the MAC/PLS data rate to the data rate of the WAN PHY

IEEE P802.3ae

10Gb/s Task Force

- Compare the options
- Stimulate discussion

Why Do We Need Rate Control

- The MAC/PLS service interface operates at 10.000 Gb/s
- The WAN PHY is constrained by the available payload rate of OC-192c/SDH VC-4-64c
- For the UniPHY the available payload rate is 9.29419 Gb/s

IEEE P802.3ae

10Gb/s Task Force

Candidate Rate Control Methods

- Clock stretching
- Word hold
- Busy idle

HMF

- Open loop
- Frame based

Clock Stretching

 Stretch or "gap" the transmit and receive clock references at the XGMII

Word Hold

Add signals to the XGMII to hold off the MAC transmitter and receiver

http://www.ieee802.org/3/10G_study/public/jan00/figueira_1_0100.pdf

HMF

Busy Idle

- PHY sends normal Idle to MAC when it can accept data
- PHY sends Busy Idle to MAC when it wants MAC to slow down
 - MAC inhibits further transmission at packet boundary

http://www.ieee802.org/3/10G_study/public/jan00/frazier_1_0100.pdf

Open Loop

- The MAC stretches its IPG in proportion to the length of the packet proceeding the IPG
- The MAC knows the desired rate, and stretches its IPG appropriately

http://www.ieee802.org/3/10G_study/public/mar00/muller_1_0300.pdf

Frame Based

- Similar to 802.3x Pause Flow Control
- PHY generates Pause frames with a timer value of either FF (XOFF) or 00 (XON)

Clock Stretching

• Pros

- Precise
- No extra pins
- Minimal FIFO required in PHY ~ 16 bytes
- PHY controls the rate
- Adapts to a wide range of rates and varying rates
- Cons

HMF

- Difficult timing
- Interrupts flow of data through pipeline stages
- Makes buffer pre-fetching difficult
- Doesn't work with XAUI

Word Hold

- Pros
 - Precise
 - Minimal FIFO required in PHY ~ 16 bytes
 - PHY controls the rate
 - Adapts to a wide range of rates and varying rates
- Cons

HMF

- Extra pins
- Difficult timing
- Interrupts flow of data through pipeline stages
- Makes buffer pre-fetching difficult
- Doesn't work with XAUI

Busy Idle

• Pros

- Precise
- No extra pins
- PHY controls the rate
- Words with XGMII and XAUI
- Adapts to a wide range of rates and varying rates

Cons

HMF

- Small FIFO required in PHY ~700 bytes
- Constrains physical distance between MAC and PHY

Open Loop

• Pros

- No extra pins
- Works with XGMII and XAUI
- MAC controls the rate
- Not sensitive to physical distance between MAC and PHY

Cons

HMF

- Imprecise
- Small FIFO required in PHY ~600 bytes
- Does not adapt to varying rates
- MAC must know the rate a priori

Frame Based

• Pros

- No extra pins
- Familiar mechanism
- Already implemented in most Gig MACs
- PHY controls the rate
- Works with XGMII and XAUI
- Cons

HMF

- Confusion between PHY to MAC rate control and end to end flow control frames
- Small FIFO required in PHY ~800 bytes
- Relatively large amount of logic required in PHY

Summary

- Several candidate rate control methods exist
- All of them can meet the objective
- The choice comes down to how much weight you give each of the pros and cons