Proposed Set of PMDs, Related Specifications and Rationale

Presented By Paul Kolesar, Lucent Technologies

May 23-25, 2000 IEEE 802.3ae Interim Meeting, Ottawa

Objective

- To propose a set of PMD implementations that
 meet all the P802.3ae distance objectives and criteria
 provide an optimal mix of technologies
- The set consists of
 - Serial 850 nm
 - 850 nm CWDM proposed by Wiedemann, 5/00
 - 3-PMD set proposed by Hanson, 5/00: 1300 WWDM, 1310 Serial, 1550 Serial
- Target 850 nm Serial specifications are described
- Rationale on PMD optimization

Critical Optimization Dimensions

- Cost
- Risk
 - Manufacturability
 - Time to Market
 - Market Acceptance
- Application Space Coverage
- Implementation Complexity
- Proven Technical Feasibility
- Multi-vendor support

Cost Optimization Must have low cost solution for short reach application Most cost sensitive application space The highest volume application space 90% of 10GbE ports expected to be in enterprise Source: Technical Essence Webs 92% of enterprise backbones <300 meters The 300 meter objective must be served with the lowest cost PMD for broad market acceptance Historically SX technology is lowest cost

Cost Projections from Reflector Average Relative Cost Projection 3.5 1G SX IG LX 2.5 10G 850 Serial 10G 1300 4WDM 10G 1300 Serial PMD Type PMD Type Rich T. Jack J. Pa Ed C 1 GbE SX PHY current cost 1 GDE SA PHY current cost 1 GDE LX PHY current cost 10 GDE Serial 850 nm in (20 10 GDE WWDM 1300 nm in (850 Serial projected to have the lowest cost. 850 CWDM cost claims competitive with 850 Serial.

Cost element	4λ WDM	850 Serial
Lasers & drivers	4 (λ-selected)	1
Detectors & amps	4	1
Optical alignments	10 SM/MM (5 Tx & 5 Rx) Offset Patch Cord	2 MM
Optical filters	4 or 8	0
Mux	1 optical	1 electrical
Demux	1 optical	1 electrical
IC speed	3.1 G	10.3 G

Market Acceptance

 Customers already have installed next generation MMF Lucent's LazrSPEED™ MMF available since January Sample installations to date: Agilent BMW Merrill Lynch Nokia

Peco Genco Pike's Peak College University of Texas Wells Fargo

Demand exceeding projections.

Other manufacturers to supply new MMF include: Alcatel, Corning and Plasma

13

17

- Some reasons why customers install new MMF
 - End users believe that serial 850 will likely end up providing the lowest system cost.
 - The fact that cabling is a small part of the overall system cost today, and a decreasing fraction as speeds increase.
 - End users desire to manage legacy, current, and future applications on one fiber type. (SM is NOT backward compatible to the <1Gbs applications that most end users must support)
 - Aversion of end-users to installing difficult to terminate single mode fiber in buildings.
 - The relative ease with which building backbones can be upgraded.

14

Market Acceptance

Sufficient PMD offering critical

- Additional PMDs do not retard market
 - 100BASE-T2 / T4 / TX example:
 - T2 and T4 targeted installed Cat 3 UTP
 - TX targeted new Cat 5 at lower cost
 - Only TX was accepted by market
 - Cat 5 rapidly displaced Cat 3 in more difficult to upgrade horizontals
 - What would have happened to Ethernet without TX and Cat 5 UTP?
- Offering sub-optimal solutions retards market
 - Example: A Humvee is an all-purpose vehicle, but unacceptable as one-size fits all solution
- Market acceptance depends on how well we match solution to customer needs

Application Space Coverage

- Must have cost-optimized solution for short reach market
 - 850 nm Serial is optimized for 300 m application space
- Customers need sub-100m solutions
 - 10G application heavily used in equipment room.
 - While no survey of equipment room link lengths available, < 100 m capability sufficient for equipment clusters, so can reuse existing fiber with serial 850 nm solution.
 - · Equipment room cabling is often point to point jumpers.
 - Cost of jumpers dwarfed by cost of new electronics.
 - New MMF can easily be deployed in equipment room for longer lengths.

Implementation Complexity

- Serial Optics less complex than WDM optics
- Serial approach requires more complex Integrated Circuits
 - Many IC vendors addressing design issues
 - Cost savings result from technology advancements (SiGe,CMOS), volumes and competition
- Optical complexity includes difficult to reduce overheads
 - alignment tolerances
 - parts count
 - hybrid assembly techniques
 - mode-conditioning patch cords for SMF optics on MMF
- Favorable to trade optical complexity for IC complexity

Proven Technical Feasibility

- Serial 850 nm technology repeatedly demonstrated feasible by multiple PMD and fiber vendors.
- Operational under worse-than-worst-case stress conditions
- Fiber bandwidth test method and laser launch conditions in fast-track development in TIA FO-2.2 aligned with IEEE schedule
 - Benefiting from 1G experience
 - System proposal in place, backed by powerful simulation capability
 - Participants include
 - Agilent, Alcatel, Cielo, Compaq, Corning, GN Nettest, IBM Infineon, Lucent, Naval SWC, NIST, Nortel, Picolight, Plasma, Raytheon, Siecor
- Cabling standards agree to add new MMF specifications
 - See TR42 Liaison Letter to IEEE 802.3 and 802.3ae of May 19, 2000

BER BER, worst case
BER, worst case
worst case
BER
BER
BER
iness tested
BER

Technical Feasibility / Multi-Vendor

<section-header><section-header><section-header><section-header><figure><figure><figure><image>

Fiber type	Modal BW @ 850 nm (min. overfilled launch except as noted) (MHz*km)	Minimum range (meters)
ο μm MMF	2000 ^a	2 to 300
50 µm MMF	500	2 to 86
50 µm MMF	400	2 to 69
62.5 µm MMF	200	2 to 35
62.5 µm MMF	160	2 to 28
10 µm SMF	N/A	Not Supported

Transmitter Type Shortwave Laser Signaling speed 10.3125 +/ 100 ppm Gbd Wavelength (λ, range) 840 to 860 nm Frise/Tfall (max; 20%-80%) 31.5 ps XMS spectral width (max) ^a 0.35 nm verage launch power (max) See note b. dBm verage launch power (min) -5.5 dBm Extinction ratio (min) ^c 6.5 dB XIN (max) -125 dB/Hz	ransmitter Type ignaling speed Vavelength (λ, range) rise/Tfall (max; 20%-80%) MS spectral width (max) ^a verage launch power (max) verage launch power (min)	Shortwa 10.3125 + 840 t 3' 0.	ve Laser /- 100 ppm :o 860 1.5	Gbd nm
Signaling speed 10.3125 +/- 100 ppm Gbd Wavelength (Å, range) 840 to 860 nm Trise/Trial (max; 20%-80%) 31.5 ps RMS spectral width (max) [®] 0.35 nm Average launch power (max) See note b. dBm Verage launch power (min) -5.5 dBm Verage launch power of OFF transmitter (max) -30 dBm Xinction ratio (min) ^e 6.5 dB XilN (max) -125 dB/Hz	ignaling speed Vavelength (λ, range) rise/Tfall (max; 20%-80%) MS spectral width (max) ^a verage launch power (max) verage launch power (min)	10.3125 + 840 t 31 0.	/- 100 ppm to 860 1.5	Gbd nm ps
Wavelength (À, range) 840 to 860 nm Trise/Tfall (max; 20%-60%) 31.5 ps RMS spectral width (max) ^a 0.35 nm vverage launch power (max) See note b. dBm vverage launch power (min) -5.5 dBm vverage launch power of OFF transmitter (max) -30 dBm Vverage launch power of OFF transmitter (max) -30 dBm Xinction ratio (min) ^e 6.5 dB XilN (max) -125 dB/Hz	Vavelength (λ, range) rise/Tfall (max; 20%-80%) MS spectral width (max) ^a verage launch power (max) verage launch power (min)	840 t 3' 0.	to 860 1.5	nm ps
Trise/Tfall (max; 20%-80%) 31.5 ps RMS spectral width (max) ^a 0.35 nm Average launch power (max) See note b. dBm Average launch power (min) -5.5 dBm verage launch power of OFF transmitter (max) -30 dBm xinction ratio (min) ^c 6.5 dB XIN (max) -125 dB/Hz	rise/Tfall (max; 20%-80%) MS spectral width (max) ^a verage launch power (max) verage launch power (min)	3 ⁴ 0.	1.5	DS
RMS spectral width (max) ^a 0.35 nm Average launch power (max) See note b. dBm Average launch power (min) -5.5 dBm verage launch power of OFF transmitter (max) -30 dBm xitinction ratio (min) ^c 6.5 dB XIN (max) -125 dB/Hz	MS spectral width (max) ^a verage launch power (max) verage launch power (min)	0.	0.35	
Average launch power (max) See note b. dBm Average launch power (min) -5.5 dBm Average launch power of OFF transmitter (max) -30 dBm Extinction ratio (min) ^c 6.5 dB XIN (max) -125 dB/Hz	verage launch power (max) verage launch power (min)	See note b.		nm
Average launch power (min) -5.5 dBm Average launch power of OFF transmitter (max) -30 dBm ±xtinction ratio (min) ^c 6.5 dB XIN (max) -125 dB/Hz	verage launch power (min)	-5 5		dBm
Average launch power of OFF transmitter (max) -30 dBm Extinction ratio (min) ⁶ 6.5 dB XIN (max) -125 dB/Hz		-5	i.5	dBm
Extinction ratio (min) ^c 6.5 dB RIN (max) -125 dB/Hz	verage launch power of OFF transmitter (max)	-30		dBm
RIN (max) -125 dB/Hz	xtinction ratio (min) ^c	6	.5	dB
	IN (max)	-1	25	dB/Hz
Encircled flux @ r =15 µm in 50 µm fiber (min)" 85 %	ncircled flux @ r =15 µm in 50 µm fiber (min) ^d	8	15	%

Description	50 µm MMF	62.5 µm MMF	Unit
Signaling Speed (range)	10.3125 +	GBd	
Wavelength (range)	840 t	nm	
Average receive power (max)	-1	1.0	dBm
Receive sensitivity	-1	3.0	dBm
Return loss (min)	1	dB	
Stressed receive sensitivity	-8.5 -7.6		dBm
Vertical eye closure penalty	2.5	3.0	dB
Receive electrical 3 dB upper cutoff frequency (max)	1:	GHz	

Parameter		50 µm M	MF	62.5	µm MMF	Units
Modal BW @ 850 nm (min. overfilled launch except as noted)	2000 ^a	500	400	200	160	MHz-km
Link Power budget	7.5	7.5	7.5	7.5	7.5	dB
Operating Distance	300	86	69	35	28	m
Channel insertion loss	2.59	1.81	1.75	1.63	1.60	dB
Link power penalties	4.68	4.89	4.89	4.83	4.83	dB
Unallocated margin	0.23	0.80	0.86	1.04	1.07	dB

26

Compliance	Total	jitter	Determin	istic jitter
point	UI	ps	UI	ps
ГР1	0.24	23.3	0.100	9.7
TP1 to TP2	0.284	27.5	0.100	9.7
FP2	0.431	41.8	0.200	19.4
TP2 to TP3	0.170	16.5	0.050	4.8
ГРЗ	0.510	49.5	0.250	24.2
FP3 to TP4	0.332	32.2	0.212	20.6
ГР4	0.749	72.6	0.462	44.8

Determine the product of the product o

Summary

- Broad Market Potential / Application Space Coverage
 - Bulk of market is short reach. 10GbE must provide solution optimized for the <300 m application space.
- Economic Feasibility
 - 850-nm serial will be the lowest cost. As IC costs decline, cost determined by intrinsic optics complexity.
- Technical Feasibility
 - Serial 850 nm demonstrated more than any other emerging technology. Target specifications realistic. Direct evolution of existing technology provides low risk path.
- Multi-Vendor Support and Supply
 - Many companies supporting 850 nm serial technology. Ensures competition and product availability.

29

