P802.3ae Serial Jitter Test Pattern Ad-Hoc Summary

Ben Brown Ad-Hoc Chair 23-May-2001

Participants

- Don Alderrou
- Piers Dawe
- Gareth Edwards
- John Ewen
- Dawson Kesling
- Peter Ohlen
- Anthony Sanders
- Pat Thaler

- Ben Brown
- Schelto van Doorn
- Jennifer Evans
- Steve Haddock
- Tom Lindsay
- Bill Reysen
- Jonathan Thatcher
- Tim Warland

Motivations - Why not use the 1+x²⁸+x³¹ PRBS?

- Use a "real life" pattern (some PLLs may expect/require sync bits)
- Use existing logic (1+x³⁹+x⁵⁸ scrambler), easy to generate
- Focus on patterns that occur once in a given period of time (week/day/hour?)
- Find a pattern that is sufficiently stressful to test PLL designs

Tests to be supported

- Tests with mixed frequency pattern
 - Jitter
 RX Sensitivity/Saturation
 - Eye Mask
 Stressed RX Sensitivity
- Tests with square wave
 - Rise/Fall Time
 ER/OMA
- Tests that can be done either way
 - Optical power
 Encircled flux
 - RIN
 - Spectral Width/Center/Side Mode Suppression

Square Wave Pattern

- A single frequency is adequate
- Decided upon a range to suit different implementation styles
 - Minimum 4 bits high/4 bits low
 - Maximum 11 bits high/11 bits low
- Repeat forever
- Transmit tests only
- No need to capture at receiver

LAN vs. WAN

- This discussion is LAN Serial only
- The WAN PHY intends to provide a separate solution to a comment against Clause 50.
 - Modifications to pattern in ITU-T G.957
 - Other pattern using SONET framing and scrambler with fixed payload

Ideal Jitter Pattern "Must Have"s

- Short enough to fit into a BERT
- Several content types:
 - Long run length with no transitions
 - Long run lengths with few transitions
 - Rapid change in transition density
 - Extreme running disparity
 - Rapid change in running disparity
 - Polarity bias, stresses a particular data edge

"Must Have"s (cont.)

- Ability to generate and check the pattern in the same device at the same time
- Error counter attributes:
 - Sticky at max
 - Can be reset for new measurement
 - Count only once per 66-bit block
- Ability to synchronize in the presence of errors - at 10⁻⁵ or perhaps even 10⁻³

"Nice to Have"s

- Ability to measure BER "down" to a particular value
 - 8-bit counter supports 10⁻⁸ when read once per second
 - Higher BERs might require a wider counter or more frequent reads
- Pattern should not be so stressful that EMI is compromised

Methodology: Common to Original Proposals

- Use the existing $1+x^{39}+x^{58}$ scrambler
- Seed the scrambler with start values
 - Repeatable
 - Predictable
- Operate the scrambler for a finite time
- Use 66-bit blocks with fixed, control block sync header
- Count errors at the receiver

Methodology: Agreed upon by Ad-Hoc participants

- Fixed pattern length: 33792 bits (4x128x66)
- 2 58-bit Seeds (e.g. "typical" & "atypical" patterns)
- Always invert the patterns in the following format:
 - Seed A
 - Seed A Invert
 - Seed B
 - Seed B Invert

Methodology (Cont.)

- Registers common between TX & RX
- Data input selectable between all 0s and the LF value
- Receive:
 - No elaborate PCS sync state machine
 - Ignore the first error in every group of 128
 - BERT without 64B/66B may compare every bit to known pattern
 - BERT must find unique bit pattern for sync

Pattern Content

- Run length on the order of ~50 bits
- "Stressful" portion NOT at beginning
- Impossible to suggest exact bit patterns
- Use disparity slopes & base line wander sigmas instead
- Choose something that is close
- All should test it
- If a better one is found later, that's why the seeds are programmable!

Continuing work

- Specify what the pattern contents actually need to be
- Search for seeds that will generate the associated patterns

HELP

- Once we find appropriate patterns, we can make them available on the web site (hex/ascii)
- We need individuals that can actually test these patterns

Straw Poll Questions

- Is it mandatory for a transmitter to support these testing modes?
- Y: 54 N: 3 A: 14
- Is it mandatory for a receiver to include the random portion of the testing modes?
- Y: 47 N: 2 A: 23
- Is it mandatory be able to operate both transmit and receive simultaneously?
- Y: 35 N: 4 A: 30

Motion

Accept the proposals and straw poll results from brown_1_0501.pdf to be used as guidance through comment resolution

Move: Ben Brown

Second: Pat Thaler

Technical (75%)

Pass:85	Fail:1	Abstain:9	Everyone
Pass:56	Fail:1	Abstain:7	802.3 Voters