Simplified temporal specification for 10GBASE-LR/LW (1310 nm serial)

Piers DaweAgilent TechnologiesPetar PepeljugoskiIBMVipul BhattFinisarPeter ÖhlénOptillion

St Louis, May 2001

Motivation

- Don't want to cost more than SONET
- Cost in building transmitter
- Cost of measurement
- Thermal

Cost in building transmitter

- Bandwidth costs \$
- Lasers can't be scaled like MOS, evolve slower than Moore's Law
- Already the LAN PHY has to run approx.
 4% faster than OC-192 or WAN PHY
- Risetime spec. we have may mean Tx be >10% faster again
- Hot lasers are slower: issue with port density

Cost of measurement

- Three time-domain transmitter metrics where two would do
 - 1. Eye mask Transition < 1 UI eye mask length (seen through standard Bessel filter)
 - -2. Rise time
 - -3. (Ethernet's) Jitter

Approximately, DJ only.

Measured through standard Bessel filter

• One of these metrics is redundant!

Eye mask imposes (Risetime+Jitter) < 0.8 UI Risetime is redundant if numbers add up

Compare optical standards 1 of 2

- SDH and SONET
 - Single mode fiber
 - Little ISI from link (very high fiber bandwidth)
 - -1. Eye mask
 - -2. Jitter up to B/2500 Hz
- Fibre Channel and 1G Ethernet
 - Multi mode fiber
 - Much ISI from link (limited link bandwidth)
 - -1. Eye mask
 - -2. Rise time -2. Rise time -2. Rise time
 - 3. Jitter up to B/2 Hz More stringent
- 10GE draft 3.0 Three kinds (see next slide)

Compare standards 2 of 2: 10GE

- 850 nm serial draft 3.0
 - Multi mode fiber, much ISI
 - 1. Eye mask
 - -2. Rise time
 - 3. Jitter up to B/2 Hz
- 1310 nm serial
 - Single mode fiber, less ISI
 - 1. Eye mask
 - -2. Rise time *This can be superfluous*
 - 3. Jitter up to B/2 Hz
- 1550 nm serial
 - Single mode fiber, moderate ISI
 - 1. Eye mask
 - 2. Rise time
 3. Jitter up to B/2 Hz

maybe this too for a different reason

Proposition

For 1310 nm serial:

- Tx eye and high SMF bandwidth guarantee useable eye at Rx
- 802.3ae's new very thorough jitter measurement, and high SMF bandwidth, guarantee useable jitter at CDR
- Risetime is of no interest to Rx or CDR, it is only a means to an end
- Let's specify the end not the means

Timing budget as draft 3.0

		UI		ps
Eye mask		0.2		19
Risetimes (25%-75%)				
Tx r'time (40 ps 20-80%)	0.33		32	
Link risetime	0.20		19	
Rx risetime	0.22		22	
RSS: total risetime		0.44		43
Det. Jitter		0.35		<u>34</u>
Eye+Rise+DJ		0.99		96
(One bit =		1		97)

Remainder (1 ps) is for RJ & Tx noise at 3sigma Tx risetime spec is superfluous with this much DJ

Two equivalent eyes: timing budgets

	UI	ps		UI	ps	
Eye mask	0.2	19		0.2	19	
Risetimes (25%-75%)						
Tx risetime < 0.33	32		0.53	51	•	
Link r'time 0.20	19		0.20	19		
Rx risetime 0.22	22		0.22	22		
RSS: total risetime	0.44	43		0.61	59	
Det. Jitter <	0.35	34		<u>0.15</u>	15	\geq
Eye+Rise+DJ	0.99	96		0.96	93	
One bit =	1.00	<u>97</u>		1.00	<u>97</u>	
Remainder for RJ	0.01	1		0.04	4	←
& Tx noise at 3σ	Sa	me ma	ask r	nargi	<u>n</u> —	

Simulations: trading rise time and DJ

Viewed at receiver, transfer function filter order N=4 (N=1 gives similar conclusion). Using DCD to simulate DJ

Trading off 10 ps more 10-90% rise time for 4 ps DJ adds <0.1 dB additional ISI penalty

Parameters in simulation aren't the same as previous slide (32*1.26*1.518=61ps, 51*1.26*1.518=97ps)

RX BW=7725 MHz; Nfilter=4; Trise(10-90)=61ps; DJ@TP2=13 ps DJ@TP35=12 ps; ISI @TP35=0.9 dB

RX BW=7725 MHz; Nfilter=4; Trise (10-90)=71.3ps; DJ@TP2=8.7 ps; DJ@TP35=9.0 ps;ISI @TP35=0.98 dB

Proposed changes

- 1. Keep eye and jitter specs the same
- 2. Keep Tx power the same
- 3. Keep Rx the same
- 4. Keep link attenuation the same
- 5. Delete risetime requirement

Result of proposed changes

- Simpler standard
- Implementers can (implicitly) trade off Tx DJ and speed
 - More design freedom
 - But without the complexity of trade off curves
 - Speed and jitter typically do trade off in practice

Conclusion

- Proposed changes will make the 10GBASE-LX (and -LW) transmitter Cheaper, or Able to run hotter
- This may benefit port density