Remote Fault & Break Link Proposal Update

Howard Frazier

DomiNet Systems Inc.

Pat Thaler

Agilent Technologies Inc.

Shimon Muller

Sun Microsystems Inc.

Tampa, FL; November 7, 2000

 IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

1

Outline

- Introduction
 - Definitions
 - What has changed since September
- Concept
- State Machines
- What About OAM&P?
- Summary
 - Future Work Items
 - Conclusions and Recommendations

Introduction --- Definitions

- This proposal provides a <u>robust</u> mechanism for supporting two (and exactly two) primitives
 - Remote Fault
 - Indicates that a problem has been detected by the remote receiver
 - The source of the fault could be at:
 - Local transmitter
 - Interconnecting channel
 - Remote receiver
 - Break Link
 - Intended to reset the channel and re-start the synchronization process
 - Allows both ends of the link to come up at the same time
- Both primitives indicate the occurrence of serious problems
 - Totally preclude data exchange

	3
IEEE 802.3	ae
10 Gigabit Ether	net S. Muller - Sun

Introduction --- What Has Changed

- At the last meeting (New Orleans), the following specific concerns were raised with regard to the previous version of this proposal:
 - "EMI friendliness"
 - Continuous periodic signaling has the potential of introducing EMI problems
 - Lane alignment during RF/BL signaling
 - Not requiring lane alignment during event signaling may be a "bad feature"
 - Support for very long links (~8,000km)
- This version of the proposal addresses these concerns:
 - **RF/BL** signaling is randomized in the Idle stream
 - Lane alignment is maintained at all times
 - Timer values have been increased to support 10,000km links

	4
	EE 802.3ae
10 G	igabit Ethernet S. Muller - Sun

Concept

Break Link

- Low-level continuous signaling
 - K28.7 across all four lanes on XAUI
 - More efficient code reuse possible
 - Randomly interleaved in the normal Idle stream
 - Lane alignment maintained
 - Mapped to a "reserved0" 64b/66b Control Frame for UniPHY
- Sent for the duration of ~100msec
 - During start up
 - When one end of the link loses synchronization
 - When one end of the link issues a "PHY_Reset"
- Effect of receipt
 - Set the link status bit to "down"
 - Reset the link synchronization state machine and the de-skew logic

	5
IEEE 802.3ae	
10 Gigabit Etherne	S. Muller - Sun

Concept (continued)

Remote Fault

- Low-level continuous randomized signaling
 - K28.1 across all four lanes on XAUI
 - K23.7 is another alternative
 - More efficient code reuse possible
 - Randomly interleaved in the normal Idle stream
 - Lane alignment maintained
 - Mapped to a "reserved1" 64b/66b Control Frame for UniPHY
- Sent forever
 - Whenever the local receiver cannot achieve synchronization
- Effect of receipt:
 - Keep the link status bit as "down"
 - Set the Remote Fault status bit when local receiver is in synch and it continues receiving RF signals
 - Once set, the Remote Fault status bit is only cleared when link status is "up"

6

IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

Transmit Synchronization State Machine

Receive Detection State Machines

Notes:

- * rx_sync_detected = signal_detect * pll_lock * rx_lane0_in_sync * rx_lane1_in_sync * rx_lane2_in_sync * rx_lane3_in_sync
- * BL_detected = (rx_lane0 = K28.7) * (rx_lane1 = K28.7) * (rx_lane2 = K28.7) * (rx_lane3 = K28.7)
- * RF_detected = (rx_lane0 = K28.1) * (rx_lane1 = K28.1) * (rx_lane2 = K28.1) * (rx_lane3 = K28.1)

* sending_As = (tx_lane0 = K28.3) * (tx_lane1 = K28.3) * (tx_lane2 = K28.3) * (tx_lane3 = K28.3)

What About OAM&P?

- There seems to be a wide consensus that OAM&P support in the WAN should be a mandatory function for 10 Gigabit Ethernet
- To date, it does not appear that the same level of consensus exists regarding the necessity of this function in LAN applications
- If 802.3ae decides to provide support for OAM&P in the LAN, such a solution should architecturally easily scale to higher speeds
 - LSS, as proposed, does not meet this requirement
 - Relies on the existence and a minimum duration of the IPG
 - What about 100 Gigabit Ethernet that uses 8-wavelength WDM?
- Potential solutions:
 - Use the WAN PHY in LAN applications
 - Frame-based approach
 - Very low overhead --- OAM&P information requires very little bandwidth
 - Can use high level management frames (SNMP)
 - Alternatively, a low level MAC frame can be defined (similar to 802.3x)

9

 IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

Summary --- Future Work Items

- This proposal as presented is XAUI-oriented
 - "XAUI-less" implementations will have a very similar (but not necessarily an identical) mechanism
- Need to decide what is the appropriate location in the stack for this mechanism
 - Duplicated in each "PCS-type" sublayer?
 - Partitioned between the sublayers
 - **RS** contains the PHY-independent functions
 - Each "PCS-type" sublayer has only the PHY-specific functions
- Local signaling between the sublayers might be needed
 - Local Fault
 - Local Synch
- Need to consider a more code-efficient signaling scheme
 - Use a single control code with "lane encoding"

		10
	EEE 802.3ae	
10	0 Gigabit Ethernet	S. Muller - Sun

. . .

Summary --- Conclusions and Recommendations

- The proposed solution for Link Break and Remote Fault functions accomplishes the desired goals using a mechanism which is:
 - Robust
 - Continuous signaling
 - Predictable behavior
 - Simple and cheap
 - One state machine
 - Two timers
 - Two counters
 - Scalable
 - Does not rely neither on the existence nor the duration of an IPG
 - Will work for all speeds (100-Gigabit Ethernet,....)
- Support for OAM&P in the LAN is unrelated to LB/RF and should be considered on its own merits
- We recommend that this proposal be adopted by 802.3ae as basis for further work for the 10-Gigabit Ethernet standard

	11
IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun
	3. Muller - Sull