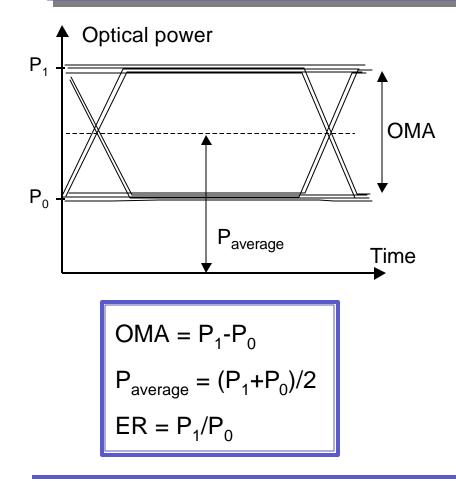
Optical Modulation Amplitude (OMA) for single-mode serial PMDs

Peter Öhlen, Krister Fröjdh, OptoTronic Piers Dawe, Agilent Mark Donhowe, WL Gore

Previous presentations on OMA

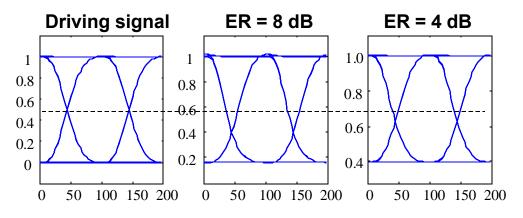

• Donhowe et al.

http://www.ieee802.org/3/10G_study/public/sept99/donhowe_1_0999.pdf

• Frojdh

http://www.ieee802.org/3/ae/public/may00/frojdh_1_0500.pdf http://www.ieee802.org/3/ae/public/jul00/frojdh_1_0700.pdf

What is OMA ?


- Used by FC
- At high ER: OMA/2 = P_{average}
- Measurements are somewhat different
 - Changes in 52.6
- You could measure
 - P_{average} & ER
 - and calculate OMA

Why use OMA ?

- At the receiver OMA matters not P_{average}
 - With average power, we have to consider extinction ratio penalty (2.2 dB @ ER=6dB)
- With OMA, it is possible to use low <u>or</u> high extinction ratio, provided that
 - eye safety is OK at the transmitter
 - we do not overload the receiver
- At this point we do not touch the numbers
 - but we think OMA sets the stage for improvements

Reasons for low ER, external modulator

- Electrical driving easier
- Easier to get symmetric eye with an electroabsorbtion modulator

• Short modulator \rightarrow lower modulator loss.

Reason for low extinction ratio, directly modulated laser

- You want to stay well away from the threshold
 - Laser is slowest near the threshold
 - Low ER improves high-speed performance
- Simpler driving electronics
- Lower dispersion penalty, important for 1550 nm

- Specification @ ER=6 dB \rightarrow 2.2 dB penalty
 - Change from average power to OMA/2: Decrease powers by 2.2 dB.
- Table 60:
 - Launch power (max): +1 dBm \rightarrow -1.2 dBm
 - Launch power (min): -4 dBm \rightarrow -6.2 dBm
- Table 61:

Receive power (max): -1 dBm \rightarrow -3.2 dBm Receive sensitivity: -14 dBm \rightarrow -16.2 dBm Stressed sensitivity: -11.45 dBm \rightarrow -13.65 dBm

• Add eye safety (Tx) and overload (Rx) specs

- Specification @ ER=8 dB \rightarrow 1.4 dB penalty
 - Change from average power to OMA/2: Decrease powers by 1.4 dB.
- Table 60:
 - Launch power (max): +2 dBm \rightarrow 0.6 dBm
 - Launch power (min): -2 dBm \rightarrow -3.4 dBm
- Table 61:

Receive power (max): -8 dBm \rightarrow -9.4 dBm Receive sensitivity: -20 dBm \rightarrow -21.4 dBm Stressed sensitivity: -15.41 dBm \rightarrow -16.81 dBm

• Add eye safety (Tx) and overload (Rx) specs

Table 52-8: Transmit characteristics

(Proposed changes indicated in blue italics)			
Description	10GBASE-LR/LW	10GBASE-ER/EW	Unit
Transmitter type	Directly modulated single	Externally modulated laser	
	longitudinal mode laser.		
Signaling speed (range)			GHz
10GBASE-LX/EX	10.3125±100 ppm		
10GBASE-LW/EW	9.95328 ± 100 ppm		
Wavelength(range)	1290 to 1330	1530 to 1565	nm
T _{Rise} /T _{Fall}	40.0	30	ps
RMS spectral width	0.4	0.034	nm
Average launch power for	1 <i>(TDB)</i>	2 <i>(TBD)</i>	dBm
eye safety (max)			
Modulated launch power	-1.2	0.6	dBm
OMA/2 (max)			
Modulated launch power	-6.2	-3.4	dBm
OMA/2 (min)			
Average launch power of	-30		dBm
off transmitter (max)			
Extinction ratio (min)	6	8	dB
RIN (max)	-130	-140	

New Orleans, September 2000

Table 58-9: Receive characteristics

(Proposed changes indicated in blue italics)					
Description	10GBASE-LR/LW	10GBASE-ER/EW	Unit		
Signaling speed (range)			GHz		
10GBASE-LX/EX	10.3125±100 ppm				
10GBASE-LW/EW	9.95328±100 ppm				
Wavelength(range)	1290 to 1330	1530 to 1565	nm		
Average receive power (max)	-1 <i>(TBD)</i>	-8 (TBD)	dBm		
Modulated receive power OMA/2	-3.2	-9.4	dBm		
(max) *					
Receive sensitivity modulated power	-16.2	-21.4	dBm		
<i>OMA/2</i> *					
Return loss (min)	12	12	dB		
Stressed receive sensitivity	-13.65	-16.81	dBm		
modulated power OMA/2 *					
Vertical eye closure penalty	1.71	2.72	dB		
Received electrical 3 dB upper cutoff	TBD	TBD	GHz		
frequency (max)					
* The extinction ratio in not very impo	ortant when OMA is s	pecified, but we could	choose to		
specify this measurement at a specific ER.					

Table 58-10: Worst case link power budget and penalties

No changes

Future issues for the serial PMDs (1)

- Extinction ratio (1310 & 1550):
 - With the introduction of OMA the ER can be lowered. (Example: 4 dB*)
 - Makes transmitter design easier.
- If OMA is adopted, we need to add and/or change some measurements in 52.6
- Receiver (1550):
 - A sensitivity of -21.4 dBm may force us into an expensive APD solution. (Better: -18 dBm*)

* This number is meant to indicate directions of a future change

Future issues for the serial PMDs (2)

- Transmitter (1550):
 - Needs to be changed if the receiver spec is changed
- Make it possible to use externally or directly modulated laser for both 1300 & 1500
 - Technology makes progress and the standard should not lock itself into a specific implementation
- Current RIN specs can be too hard