Optical Modulation Amplitude (OMA) for single-mode serial PMDs

Peter Öhlen, Krister Fröjdh, OptoTronic Piers Dawe, Agilent
Mark Donhowe, WL Gore

Previous presentations on OMA

- Donhowe et al.
http://www.ieee802.org/3/10G_study/public/sept99/donhowe_1_0999.pdf
- Frojdh
http://www.ieee802.org/3/ae/public/may00/frojdh_1_0500.pdf
http://www.ieee802.org/3/ae/public/jul00/frojdh_1_0700.pdf

What is OMA ?

$$
\begin{aligned}
& \mathrm{OMA}=P_{1}-P_{0} \\
& \mathrm{P}_{\text {average }}=\left(\mathrm{P}_{1}+P_{0}\right) / 2 \\
& E R=P_{1} / P_{0}
\end{aligned}
$$

- Used by FC
- At high ER: OMA/2 $=P_{\text {average }}$
- Measurements are somewhat different
- Changes in 52.6
- You could measure
- $P_{\text {average }}$ \& $E R$
- and calculate OMA

Why use OMA?

- At the receiver OMA matters not $P_{\text {average }}$
- With average power, we have to consider extinction ratio penalty (2.2 dB @ ER=6dB)
- With OMA, it is possible to use low or high extinction ratio, provided that
- eye safety is OK at the transmitter
- we do not overload the receiver
- At this point we do not touch the numbers
- but we think OMA sets the stage for improvements

Reasons for low ER, external modulator

- Electrical driving easier
- Easier to get symmetric eye with an electroabsorbtion modulator

- Short modulator \rightarrow lower modulator loss.

Reason for low extinction ratio, directly modulated laser

- You want to stay well away from the threshold
- Laser is slowest near the threshold
- Low ER improves high-speed performance
- Simpler driving electronics
- Lower dispersion penalty, important for 1550 nm

Introduction of OMA: 10GBASE-LR/LW

- Specification @ ER=6 dB $\rightarrow 2.2 \mathrm{~dB}$ penalty
- Change from average power to OMA/2: Decrease powers by 2.2 dB .
- Table 60:

Launch power (max): $+1 \mathrm{dBm} \rightarrow-1.2 \mathrm{dBm}$
Launch power (min): $-4 \mathrm{dBm} \rightarrow-6.2 \mathrm{dBm}$

- Table 61:

Receive power (max): $-1 \mathrm{dBm} \rightarrow-3.2 \mathrm{dBm}$
Receive sensitivity: $-14 \mathrm{dBm} \rightarrow-16.2 \mathrm{dBm}$
Stressed sensitivity: $-11.45 \mathrm{dBm} \rightarrow-13.65 \mathrm{dBm}$

- Add eye safety (Tx) and overload (Rx) specs

Introduction of OMA: 10GBASE-ER/EW

- Specification @ ER=8 dB $\rightarrow 1.4 \mathrm{~dB}$ penalty
- Change from average power to OMA/2: Decrease powers by 1.4 dB .
- Table 60:

Launch power (max): $+2 \mathrm{dBm} \rightarrow 0.6 \mathrm{dBm}$
Launch power (min): $-2 \mathrm{dBm} \rightarrow-3.4 \mathrm{dBm}$

- Table 61:

Receive power (max): $-8 \mathrm{dBm} \rightarrow-9.4 \mathrm{dBm}$
Receive sensitivity: $-20 \mathrm{dBm} \rightarrow-21.4 \mathrm{dBm}$
Stressed sensitivity: $-15.41 \mathrm{dBm} \rightarrow-16.81 \mathrm{dBm}$

- Add eye safety (Tx) and overload (Rx) specs

Table 52-8: Transmit characteristics

(Proposed changes indicated in blue italics)

Description	10GBASE-LR/LW	10GBASE-ER/EW	Unit
Transmitter type	Directly modulated single longitudinal mode laser.	Externally modulated laser	
Signaling speed (range)			GHz
10GBASE-LX/EX	10.312	100 ppm	
10GBASE-LW/EW	9.95328	$\pm 100 \mathrm{ppm}$	
Wavelength(range)	1290 to 1330	1530 to 1565	nm
$\mathrm{T}_{\text {Rise }} / \mathrm{T}_{\text {Fall }}$	40.0	30	ps
RMS spectral width	0.4	0.034	nm
Average launch power for eye safety (max)	1 (TDB)	2 (TBD)	dBm
Modulated launch power OMA/2 (max)	-1.2	0.6	dBm
Modulated launch power $O M A / 2 \text { (min) }$	-6.2	-3.4	dBm
Average launch power of off transmitter (max)	-30		dBm
Extinction ratio (min)	6	8	dB
RIN (max)	-130	-140	

Table 58-9: Receive characteristics

(Proposed changes indicated in blue italics)			
Description	10GBASE-LR/LW	10GBASE-ER/EW	Unit
Signaling speed (range)	$10.3125^{ \pm} 100 \mathrm{ppm}$		GHz
10GBASE-LX/EX	$9.95328 \pm 100 \mathrm{ppm}$		
10GBASE-LW/EW	1290 to 1330	1530 to 1565	nm
Wavelength(range)	-1 (TBD)	$-8(T B D)$	dBm
Average receive power (max)	-3.2	-9.4	dBm
Modulated receive power OMA/2 (max) *	-16.2	-21.4	dBm
Receive sensitivity modulated power OMA/2 *	12	12	dB
Return loss (min)	-13.65	-16.81	dBm
Stressed receive sensitivity modulated power OMA/2	1.71	2.72	dB
Vertical eye closure penalty	$T B D$	TBD	GHz
Received electrical 3 dB upper cutoff frequency (max)	* The extinction ratio in not very important when OMA is specified, but we could choose to specify this measurement at a specific ER.		

Table 58-10: Worst case link power budget and penalties

No changes

Future issues for the serial PMDs (1)

- Extinction ratio (1310 \& 1550):
- With the introduction of OMA the ER can be lowered. (Example: 4 dB *)
- Makes transmitter design easier.
- If OMA is adopted, we need to add and/or change some measurements in 52.6
- Receiver (1550):
- A sensitivity of -21.4 dBm may force us into an expensive APD solution. (Better: $-18 \mathrm{dBm} *$)

[^0]
Future issues for the serial PMDs (2)

- Transmitter (1550):
- Needs to be changed if the receiver spec is changed
- Make it possible to use externally or directly modulated laser for both 1300 \& 1500
- Technology makes progress and the standard should not lock itself into a specific implementation
- Current RIN specs can be too hard

[^0]: * This number is meant to indicate directions of a future change

