Fiber Equalization: Review of Technologies

Abhijit Phanse phanse@lan.nsc.com National Semiconductor

IEEE 802.3ae New Orleans, September 2000

Proposed Fiber Equalization

- ON-OFF Keying at 10GHz
- Receiver Equalization (No Transmitter preemphasis)
- No special start-up requirements
- Continuously adapts to slow varying and different MMF fiber channels

Equalizer types

- Analog Matched Filter Equalizer
- Analog Transversal Filter Equalizer
 - linear filter
 - non-linear filter
- Digital Transversal Filter Equalizer
 - linear filter
 - non-linear filter

IEEE 802.3ae New Orleans, September 2000

Analog Matched Filter Equalizer

- Analog Matched Filter implementation
- Frequency response approximates the inverse of the channel
- Analog filter adapts to variations in the channels
- Limited degrees of freedom
- Works well for single-path channels like copper
- Not suited for multi-path channels like fiber

IEEE 802.3ae New Orleans, September 2000

MMF Fiber response

IEEE 802.3ae New Orleans, September 2000

Analog Transversal Filter Equalizer

- Analog FFE/DFE implementation for 10GBits/s OOK
- Analog tap delays: $\tau < \text{period.}$ (No ADC required)
- Equalization and CDR are independent. No coupling.
- Analog multiply/adds
- Tap weights adapt to different fiber channels
- Analog BW > 5GHz. Constant group delay for f > 5GHz.
- AFE implemented in SiGe/CMOS.

IEEE 802.3ae New Orleans, September 2000

Digital Transversal Filter Equalizer

- Digital FFE/DFE implementation for 10GBits/s OOK
- 10GS/s Interleaved ADC
- Resolution 4-6 bits?
- Equalization and CDR need to adapt together.
- Digital multiply/adds
- Tap weights adapt to different fiber channels
- ADC implemented in SiGe. DSP implemented in CMOS.

IEEE 802.3ae New Orleans, September 2000

Non-linear equalizers

- One or more symbol decisions are used to:
 - switch between different feed-back paths (DFE)
 - switch between different feed-forward paths (FFE)
 - change the slicer threshold
- Can be used for compensating nonlinearities in the channel.

Lets compare the following technologies..

	ON-OFF Fiber Equalization	1000 Base-T	Multi-level Fiber Equalization
Coding	ON-OFF NRZI • 2 levels	PAM5 with PR shaping and Trellis coding • 17 levels	PAM5 with Tomlinson- Harishima precoding with Trellis • Multi-level linear analog
Clock	10GHz	125MHz	5GHz
Echo Canceller	SimplexNo echo canceller required	 Full Duplex Requires complex echo cancellation 	Simplex No echo canceller required
Equalizati on	Adaptive receiver equalization	Adaptive receiver equalization	Adaptive (transmitter) Tomlinson- Harishima pre- emphasis

	ON-OFF Key Fiber Equalization	1000 Base-T	Multi-level Fiber Equalization
Next Cancellers	Not required	12 adaptive next cancellers	Not required
Start-up	NO special start- up protocol • Receiver adapts in < 1ms	Complex Start-up protocol • Master/Slave negotiation • Master/Slave clock resolution • Equalizer/Echo interactions	Complex start- up requirements • Need to send equalizer coefficients from receiver to transmitter during start- up
Auto-negotiation	Not required	Negotiation for 10/100/1000 Master and Slave	Not required

	ON-OFF Key Fiber Equalization	1000 Base-T	Multi-level Fiber Equalization
Link Linearity requirement	 Low Binary coding is tolerant to non-linearity Non-linear equalization may be used for additional robustness 	High • Multi-level • Full-duplex	High • Multi-level
Standards process	SIMPLE	COMPLEX	COMPLEX

Conclusions

- MMF Fiber electronic equalization is very attractive, feasible, and powerful.
- Low power SiGe/CMOS implementations are possible:
 - Analog FFE/DFE
 - Digital FFE/DFE
- Non-linear equalization may be used for additional robustness
- Simpler to implement and standardize than 1000Base-T and Multi-level Fiber Equalization. Will lead to robust performance.